Particle in one dimensional potentional well

derp267
Messages
2
Reaction score
0
I hope this is in the right place, I'm new here. Anyway, my teacher hasn't shown us an example where U is anything but infinity, Uo, or 0 and I'm completely stumped on part B for this question since U is a function of x

Homework Statement


A particle of mass m moves in a one-dimensional potential well:
U(x)={infinity...x<0
{-hbar^2/mbx...x>=0

The normalized wave function is:
Ψ (x)={0...x<0
{Axe^(-x/b)...x>=0

Where b and A are constants.
a) Describe in words or equations how you would evaluate A( you do not need to actually evaluate for A).
b) Prove that the above Ψ (x) for x>=0 is an acceptable wave function
c) Find the total energy of the particle. Express your answer in the simplest terms

Homework Equations



The Attempt at a Solution


I did this on paper already and I don't know how to type an integral or anything so I just made a picture..apologies for the bad handwriting
http://imgur.com/OV8RN

So do I make -2mE/hbar^2 -k^2? Then I'm still left with -2/bx and I don't think I can use eulers method with that..I'm stuck
 
Physics news on Phys.org
Assuming you didn't make any algebra errors, your math is correct so far. Since you're trying to prove that Ψ (x) is a solution for x>0, plug their wavefunction into your final equation and see if the left and right sides equal one another. Remember that you can adjust the constant E to try to make the two sides equal, but E is a constant, so it can't depend on x.
 
Thanks for your relpy. Okay so I did as you said and plugged in Axe^(-x/b) for Ψ and did some algebra. Then I did the second derivative of Ψ(x) and set them equal to each other.

What I end up with is the following:
http://i.imgur.com/mflUG.png

So does that mean that E=(-hbar^2)/(2mb^2)?
 
Assuming your algebra is right, yes. That's the energy which corresponds to the given wavefunction.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top