Particle moves in one dimension given potential funct find maximum x

AI Thread Summary
The discussion focuses on solving a one-dimensional particle motion problem under a potential function. The correct formulation of the force is emphasized as being opposite to the direction of velocity, leading to the equation du/dx = -f(x). Conservation of energy is applied to derive the velocity and displacement equations, ultimately showing that the particle exhibits sinusoidal oscillation. The integration process is clarified, correcting misconceptions about treating x as a constant. The final results confirm the periodic nature of the motion, with the period derived from both energy conservation and differential equations.
oddjobmj
Messages
305
Reaction score
0
Please delete this post.
 
Last edited:
Physics news on Phys.org
Look..It's easy..
du/dx=f(x)..(this is where you are making mistake).The correct equation is du/dx= -f(x)
so f(x)= -2cx(This force is opposite to the direction of velocity of particle.i.e.the force is in negative x-direction..
Now do the process again and you will easily reach the answer..
 
  • Like
Likes 1 person
You do not need to differentiate the potential energy and use Newton's second law.

You already have conservation of energy: ## \frac {mv^2} {2} + cx^2 = \frac {mv_0^2} {2} ##, thus ## v = \sqrt { v_0^2 - 2 \frac c m x^2} ##, or ## \frac {dx} {dt} = \sqrt { v_0^2 - 2 \frac c m x^2} ##.

Can you solve this?

If you insist on using Newton's second law, then I should say that this step of yours: ## \int 2cxdt = \int m dv \Rightarrow \frac {2cxt} m = v + \text{constant} ## is already wrong, and not really because of the missing minus sign, but because ##x## is a function of time, no a constant, so its integral is not ##xt##.
 
  • Like
Likes 1 person
So you have $$

\int_0^{x_m} \frac {dx} {\sqrt{v_0^2 - 2 \frac c m x^2} } = \int dt

\\

\Rightarrow

\int_0^{x_m} \frac {dx} {\sqrt{1 - (ax)^2} } = v_0 \int dt

$$ where $$

a^2 = \frac {2c} {mv_0^2}
$$ Then $$

\frac a a \int_0^{x_m} \frac {dx} {\sqrt{1 - (ax)^2} } = \frac 1 a \int_0^{ax_m} \frac {d(ax)} {\sqrt{1 - (ax)^2} } = \frac 1 a (\arcsin ax_m - \arcsin 0) = \frac 1 a \arcsin ax_m = v_0 t

$$ Now ## x_m = \sqrt { \frac {mv_0^2} {2c} } = a^{-1} ##, so ##\frac 1 a \frac {\pi} 2 = v_0 t ## giving $$ t = \sqrt {\frac m {2c} } \frac {\pi} 2 $$ Also of note is that you can find ##x## as a function of ##t##: $$ x = a^{-1} \sin av_0t $$ which is a sinusoidal oscillation with period ## \frac {2 \pi} {av_0} = 2 \pi \sqrt { \frac {m} {2c}} ##. Clearly the time it takes from max velocity to max displacement is one quarter of the period, which is consistent with the previous result.

If you have studied linear differential equations, you could also observe that Newton's second law gives $$ \frac {d^2 x} {dt^2} + \frac {2 c} {m} x = 0 $$ which is a second-degree linear diff. eq., whose general solution is $$ x = A \sin (\sqrt{\frac {2c} m}t + \alpha) $$ which is again periodical with the same period, of course.
 
I greatly appreciate your help. Your solution is a work of art. I will plug in some hypothetical numbers to make sure our solutions are equivalent (unless you have already checked this). I need to write a solution in my own way and I simply would not legitimately be able to reproduce your solution on my own. Although I have saved this solution and will use it to improve with time.

Thanks again!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top