Partition Function of a Single Magnetic Particle

M@B
Messages
3
Reaction score
0

Homework Statement



For a magnetic particle with an angular momentum "quantum number", j, the allowed values of the z component of a particles magnetic moment are:

µ = -jδ, (-j + 1)δ, ..., (j-1)δ, jδ

δ is a constant, and j is a multiple of 1/2

Show that the partition function of a single magnetic particle is

Z = sinh[βδB(j+1/2)] / sinh[(βδB)/2]


Homework Equations



in general, Z = Σ exp(β·E(s))

and for a magnetic particle: E(s) = -µB

1 + x + x2 + ... +xn = 1 - xn+1 / 1 - x


The Attempt at a Solution



If i did things correctly, I can get to an equation:

Z = [1 - exp(-βδB(j+1/2))] / [1 - exp(-βδB/2)]

I got this just by x = exp(-βδB/2) and noticing that the n in the finite sum is 2j. (if you add j to all µ to get a sequence from 0 to 2j instead of -j to j). Then I plugged into the mathematical identity I have above. The problem is converting this into the sinh term that the question asks for. Unless of course, it is completely wrong, in which case I'm rather lost on the subject.

Thanks for teh help in advance,
M@

 
Physics news on Phys.org
I see two problems. First, if you have a sum of powers from -j to +j, e.g.
x^{-j} + x^{-j+1} + ... + x^j
when you add j to each index, you're really multiplying each term by x^j. In order to shift the indices, you need to divide the thing by x^j. Second, for some reason you have a negative sign in your exponentials rather than a positive sign.
 
Thank you very much for your insight. I had completely overlooked the fact that adding j to the index was actually a multiplication. I've managed to make it work out properly by taking that into consideration.

Thanks again,
M@
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top