Pauli's exclusion principle

Ravi Mohan
Messages
195
Reaction score
21
How do we prove Pauli's exclusion principle? My professor makes a Slater determinant and then merrily shows how it disappears when two columns or rows are same.
That is not Pauli's principle, is it? It is based on an assumption that certain particles are described by certain states.
So my question translates to why fermions (half integral spin particles) are described by antisymmetric states while bosons (integral spins) are described by symmetric states?
 
Physics news on Phys.org
This is a pretty deep question. The first step to understand the answer is the proof that in both relativistic an non-relativistic quantum theory for particles in spaces with dimension d \geq 3 identical particles must be described either as bosons or fermions, i.e., with states in the Fock space spanned by totally symmetrized (bosons) or antisymmetrized (fermions) product bases. This is shown in the paper

Laidlaw, M. G. G., DeWitt, Cécile Morette: Feynman Functional Integrals for Systems of Indistinguishable Particles, Phys. Rev. D 3, 1375 (1970)
http://link.aps.org/abstract/PRD/v3/i6/p1375

The second step is to understand the connection between spin and statistics in relativistic quantum field theory. The spin-statistics theorem tells us that for any local Poincare symmetric qft with a stable ground state (spectrum of the Hamiltonian bounded from below) particles with integer spin are bosons and those with half-integer spin fermions. The best book about QFT is

Weinberg, Quantum Theory of Fields, Cambridge University Press

For the very clear and careful treatment of the representation theory of the Poincare group, see vol. 1.
 
Thank you Vanhees. I will read the literature you mentioned.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
2
Views
1K
Replies
17
Views
3K
Replies
15
Views
2K
Replies
12
Views
2K
Replies
2
Views
847
Replies
2
Views
2K
Replies
8
Views
2K
Replies
3
Views
1K
Back
Top