PDE Separation of Variables: Solving utt = uxx with Boundary Conditions

In summary, the problem is solved by using the method of separation of variables to find a solution in the form of a Fourier series. The initial value conditions are then used to determine the values of the coefficients in the series. Finally, the integral from 0 to m∏ is taken to obtain the solution in terms of sine functions.
  • #1
walter9459
20
0

Homework Statement


Solve the problem.
utt = uxx 0 < x < 1, t > 0
u(x,0) = x, ut(x,0) = x(1-x), u(0,t) = 0, u(1,t) = 1


Homework Equations





The Attempt at a Solution


Here is what I have so far but I'm not sure if I am on the right path or not.

u(x,t) = X(x)T(t)
ut(x,t) = X(x)T'(t) ux(x,t) = X'(x)T(t)
utt(x,t) = X(x)T"(t) uxx(x,t) = X"(x)T(t)
X(x)T"(t) = X"(x)T(t)
T"(t)/T(T) = X"(x)/X(x) = λ
T"(t) = λT(t) X"(x) = λX(x)

λ = 0 -----> X(x) = Ax + B
b.c. u(0,t) = A(0) + B = 0 --------> B = 0
u(1,t) = A(1) + B = 1 --------> A = 1

λ > 0 --------> λ = ω2
X(x) = Acosh ωx + Bsinh ωx
X(0) = Acosh ω(0) + Bsinh ω(0) = 0
= Bsinh ω(0) = 0 ------> B = 0

λ < 0 ---------> λ = -ω2
X"(x) = λX(x) --------> X"(x) = -ω2X(x)
X(x) = Acosωx + Bsinωx
X(0) = Acosω(0) + Bsinω(0) = 0 --------> A = 0
X(1) = Acosω(1) + Bsinω(1) = 1
X(1) = Bsinω = 1 B ≠ 0
ω = ∏/2 + 2m∏ for any interger m

T"(t) = ω2T(t)
T"(t) = C cosωt + Dsinωt

u = (C cosωt + Dsinωt)sinux

Okay this is all I have. Am I on the right path and where do I go from here?
Thanks!
 
Physics news on Phys.org
  • #2
walter9459 said:

Homework Statement


Solve the problem.
utt = uxx 0 < x < 1, t > 0
u(x,0) = x, ut(x,0) = x(1-x), u(0,t) = 0, u(1,t) = 1


Homework Equations





The Attempt at a Solution


Here is what I have so far but I'm not sure if I am on the right path or not.

u(x,t) = X(x)T(t)
ut(x,t) = X(x)T'(t) ux(x,t) = X'(x)T(t)
utt(x,t) = X(x)T"(t) uxx(x,t) = X"(x)T(t)
X(x)T"(t) = X"(x)T(t)
T"(t)/T(T) = X"(x)/X(x) = λ
T"(t) = λT(t) X"(x) = λX(x)

λ = 0 -----> X(x) = Ax + B
b.c. u(0,t) = A(0) + B = 0 --------> B = 0
u(1,t) = A(1) + B = 1 --------> A = 1

λ > 0 --------> λ = ω2
X(x) = Acosh ωx + Bsinh ωx
X(0) = Acosh ω(0) + Bsinh ω(0) = 0
= Bsinh ω(0) = 0 ------> B = 0

λ < 0 ---------> λ = -ω2
X"(x) = λX(x) --------> X"(x) = -ω2X(x)
X(x) = Acosωx + Bsinωx
X(0) = Acosω(0) + Bsinω(0) = 0 --------> A = 0
X(1) = Acosω(1) + Bsinω(1) = 1
X(1) = Bsinω = 1 B ≠ 0
ω = ∏/2 + 2m∏ for any interger m

T"(t) = ω2T(t)
T"(t) = C cosωt + Dsinωt

u = (C cosωt + Dsinωt)sinux

Okay this is all I have. Am I on the right path and where do I go from here?
Thanks!
Other than the fact that you mean "sin ωx", not "sin ux", that's good. Now you have to try to make that fit the "initial vaue conditions", u(x,0)= 0 and [itex]u_t(x, 0)= x(1- x)[/itex].

You won't be able to do that with just a single "ω" so since this is a linear equation try, instead, a sum:
[tex]u(x,t)= \sum_{m=0}^\infty (cos(\pi/2 + 2m\pi)t + Dsin(\pi/2 + 2m\pi)t)sin(\pi/2 + 2\pi)x[/tex]
 
  • #3
Sorry to be so dense, but I get lost at this point.

I think I am then suppose to do

ut=X(x)[-C(∏/2 + 2m∏)sin(∏/2 + 2m∏)t + D(∏/2 + 2m∏)cos(∏/2 + 2m∏)t)
ut(x,0) = D(∏/2 + 2m∏)cos(∏/2 + 2m∏) = x(1-x) ----> D ≠ 0

t = 0 f(x) = ∑ Dsin (∏/2 + 2m∏)t

u(x,t) = ∑ D sin ((∏/2 + 2m∏)t sin (∏/2 + 2m∏)x

Am I on the doing this correctly? Do I then do the integral from 0 to m∏?

Thanks!
 

1. What is PDE Separation of Variables?

PDE Separation of Variables is a method used to solve partial differential equations (PDEs) by breaking them down into simpler ordinary differential equations (ODEs) through the separation of variables. This allows for easier and more efficient solving of complex PDEs.

2. How does PDE Separation of Variables work?

The process of PDE Separation of Variables involves assuming a solution to the PDE in the form of a product of functions of individual variables. These functions are then substituted into the PDE, resulting in a system of ODEs. These ODEs can then be solved using known techniques, and the solutions are then combined to form the final solution to the PDE.

3. When is PDE Separation of Variables used?

PDE Separation of Variables is typically used for PDEs with boundary conditions that are separable and have constant coefficients. It is commonly used in physics and engineering to solve problems involving heat transfer, fluid dynamics, and wave propagation.

4. What are the limitations of PDE Separation of Variables?

PDE Separation of Variables is only applicable to a limited class of PDEs that can be solved using this method. It is not suitable for nonlinear PDEs or PDEs with variable coefficients. Additionally, the boundary conditions must be separable in order for this method to be effective.

5. Can PDE Separation of Variables be applied to higher-dimensional problems?

Yes, PDE Separation of Variables can be extended to higher-dimensional problems, but the process becomes more complex as the number of variables increases. In these cases, it may be more efficient to use other methods such as numerical techniques to solve the PDEs.

Similar threads

  • Calculus and Beyond Homework Help
Replies
1
Views
834
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
1
Views
573
  • Calculus and Beyond Homework Help
Replies
1
Views
950
  • Calculus and Beyond Homework Help
Replies
8
Views
1K
  • Calculus and Beyond Homework Help
Replies
11
Views
2K
  • Calculus and Beyond Homework Help
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
5
Views
2K
Replies
4
Views
1K
  • Calculus and Beyond Homework Help
Replies
13
Views
2K
Back
Top