Penetrating the Rectangular Potential Barrier, E < V0

Chip
Messages
30
Reaction score
1
The following code compares my result to the known correct result. Can anyone find where my error is? If you run the octave code you will see that my answer has positive concavity whereas the correct one has negative concavity...I've checked this so many times and can't find my error. I wanted to see if I could correct it at this stage before trying to simplify to the known answer...thanks for any help.

****

%I wrote this to check my work thus far on solving the GIANT algebra problem of penetrating the rectangular barrier, where E < V0
clear;close;clc;
% setting some constants

hbar = 1.0545718*10^(-34);
m = 9.10938356 * 10^(-31);
a = 10^-20; %can be purely arbitrary

V0 = 100; %can be purely arbitrary
inc = 1;
E = inc:inc:(V0-inc);

%wavenumber formulas
k1 = (sqrt(2*m*E))/hbar;
k2 = (sqrt(2*m*(V0-E)))/hbar;

%this section contains the solution
TSoln = (1 + (((sinh(k2*a)).^2)./((4*E/V0).*(1-E/V0)))).^(-1)

%this section contains my work thus far

iVal = i*k2/k1;
BLABLA1 = ( 1 - ((1-iVal).*(e.^(-2*k2*a) )./(1+iVal) ) ) + iVal.* (1 + ((1-iVal).*(e.^(-2*k2*a) )./(1+iVal)));
BLABLA2 = ( 1 - ((1+iVal).*(e.^(2*k2*a) )./(1-iVal) ) ) - iVal.* (1 + ((1+iVal).*(e.^(2*k2*a) )./(1-iVal)));

C = (e.^(-i*k1*a)).* ((e.^(-k2*a)./ ( BLABLA1 ) ) + (e.^(k2*a)./ ( BLABLA2 )));
TChip = 4*(C.*conj(C))

plot (E, [TSoln;TChip]);
 
Physics news on Phys.org
Why not numerically integrate the differential equation. If the sign of the second derivative is right, the concavity of the solution will also be right.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top