What is the purpose of a perfect square trinomial?

  • Thread starter Thread starter Quasaire
  • Start date Start date
  • Tags Tags
    Square
AI Thread Summary
A perfect square trinomial, such as (8x + 2)^2, results from squaring a binomial and is called "perfect" because it can be expressed as the product of two identical binomials. This concept is foundational in algebra, preparing students for more advanced mathematical concepts. While perfect square trinomials have limited direct applications, they are essential for understanding functions and optimization, such as finding minimum or maximum values. An example of a non-perfect square trinomial is x^2 - 6x + 7, which cannot be expressed as (x - a)^2 for any real number a. Overall, perfect square trinomials serve as a stepping stone to higher mathematics and practical applications in various fields.
Quasaire
Messages
16
Reaction score
0
Okay so you want to find the square of this binomial (8x + 2)^2. The square of it is what they call a perfect square trinomial which is:
(8x + 2)^2 = (binomial right now)
(8x + 2)(8x + 2) =
(8x * 8x) + (8x * 2) + (8x * 2) + (2 * 2) =
64x^2 + 16x + 16x + 4 =
(64x^2 + 32x + 4) = the perfect square trinomial

I just simply want to know what is the purpose of this? I know why they call it a square trinomial but why do they call it "perfect" or is my algebra book unique in calling it perfect? What practical applications or technological systems use perfect square trinomials or are they just something to exercise your brain with for enculturation into more difficult mathematics?
 
Mathematics news on Phys.org
your book is definitely not unique in calling it perfect square trinomials. that's their name!


and it is called a perfect square trinomial becasuse as you can see with your calculations, it is the product of two binomials (the same), and thus a perfect number (as in perfect squrare).

they have some application to life, but mostly, (as with all math) they are mainly for getting you ready for higher math levels, which are highly applicable.
 
Here's an example of a trinomial that is NOT a "perfect square":

x2- 6x+ 7

It's not a perfect square because it cannot be written as (x-a)2 for any number a.

One application of the idea of perfect squares is finding largest or smallest possible values for a function (a very important specfic application of mathematics).

In order to find the smallest possible value of x2- 6x+ 7, we "complete the square" .
Knowing that (x-a)2= x2- 2ax+ a2, we look at that -6x term and think: if -2ax= -6x then a= 3. We would have to have a2= 9: x2-6x+ 9 is a perfect square: it is (x-3)2.

x2- 6x+ 7 is NOT a perfect square because it has that 7 instead of 9. But 7= 9- 2 so we can rewrite this as

x2- 6x+ 9- 2=(x- 3)2- 2.

A "perfect square" is NEVER negative: 02= 0 and the square of any other number is positive. Looking at (x-3)[sup[2[/sup]- 2, we see that if x= 3, then this is 02- 2= -2 while for any other value of x it is -2 plus a positive number: larger than -2.
The smallest possible value of this function is -2 and it happens when x= 3.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top