Perform the integral numerically

  • Thread starter Thread starter prabhjyot
  • Start date Start date
  • Tags Tags
    Integral
prabhjyot
Messages
10
Reaction score
0
need help please urgent

An object is released from rest at an altitude h above the surface of the Earth. (a) Show that its speed at a distance r from the Earth’s center, where RE < r < RE + h, is given by
v = sqrt(2GME (1/r -1/ (RE + h) )

(b) Assume the release altitude is 500 km. perform the integral:
(Delta) t = (integral from i to f) dt = - (integral from i to f) dr/v

to find the time of fall as the object moves from the release point to the Earth’s surface. The negative sign appears because the object is moving opposite to the radial direction, so its speed is v = -dr / dt. Perform the integral numerically.
 
Physics news on Phys.org
1. This belongs in the Homework & Coursework subforum.
2. We can not help you unless you follow the posting guidelines and first show your attempt at a solution.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top