Zaare
- 54
- 0
I don't know how to use the extra condition given in the this problem:
f^{\prime\prime}+\lambda f = 0, f=f\left(r\right)
f\left(r\right) = f\left(r+\pi\right)
For \lambda = 0, the solution is some constant.
For other \lambda, I put \lambda=k^2, and get
f^{\prime\prime}+k^2 f = 0,
which has the solution
f\left(r\right)=A\cos\left(kr\right)+B\sin\left(kr\right).
The condition now gives
A\cos\left(kr\right)+B\sin\left(kr\right)=<br /> A\cos\left(kr+k\pi\right)+B\sin\left(kr+k\pi\right).
How can I use this to further specify the solution?
f^{\prime\prime}+\lambda f = 0, f=f\left(r\right)
f\left(r\right) = f\left(r+\pi\right)
For \lambda = 0, the solution is some constant.
For other \lambda, I put \lambda=k^2, and get
f^{\prime\prime}+k^2 f = 0,
which has the solution
f\left(r\right)=A\cos\left(kr\right)+B\sin\left(kr\right).
The condition now gives
A\cos\left(kr\right)+B\sin\left(kr\right)=<br /> A\cos\left(kr+k\pi\right)+B\sin\left(kr+k\pi\right).
How can I use this to further specify the solution?