Permutations in rotations and reflections

cat.inthe.hat
Messages
3
Reaction score
0
Hi all, I've been having difficulty with the following question.

Let P be a regular pentagon. Let R be the rotation of P by 72degrees anticlockwise and let F be the reflection of P in the vertical line of symmetry. Represent R and F by permutations and hence calculate: F R^2 F R F^3 R^3 F, expressing this first as a permutation and then as a symmetry of P.I think I've correctly worked out R as the cycle (15432) and F = (25)(34). I've written these as permutations however, I don't understand how to do the calculation asked for and what it means by 'expressing as a symmetry of P'.

Any ideas would be much appreciated. Thanks in advance!
 
Physics news on Phys.org
The calculation is just the composition of the R and F permutations, in the specified order. In your case, you first rotate counterclockwise by 72 degrees (F), then reflect three times (here, you may use the fact that R2=I, where I is the identity), then rotate again by 3x72 degrees, etc.

The final expression should express a symmetry.
 
JSuarez said:
The calculation is just the composition of the R and F permutations, in the specified order. In your case, you first rotate counterclockwise by 72 degrees (F), then reflect three times (here, you may use the fact that R2=I, where I is the identity), then rotate again by 3x72 degrees, etc.

The final expression should express a symmetry.


So, I should work out the permutations for F, R^2, ... etc. and then multiply them all in the order stated. Is this what you're saying? (Sorry I didn't quite understand).
 
Yes, that's pretty much it.
 
JSuarez said:
Yes, that's pretty much it.

Ok, thank you. =)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top