Perturbation Theory transmission probability

raintrek
Messages
68
Reaction score
0
I'm trying to bridge the gap between several expressions describing the insertion of a constant perturbation:

a_{f}(t) = \frac{1}{i\hbar} V_{fi} \int^{t}_{0} e^{i(E_{f}-E_{i})t'/\hbar}dt' = \frac{1}{i\hbar}V_{fi}\frac{e^{i(E_{f}-E_{i})t/\hbar} - 1}{i(E_{f}-E_{i})/\hbar}

so:

|a_{f}(t)|^{2} = \frac{1}{\hbar^{2}}|V_{fi}|^{2} 2 \frac{1 - cos(E_{f} - E_{i})t/\hbar}{(E_{f} - E_{i})^{2}/\hbar^{2}}

^ I'm not sure how they arrive at that step... I assume it's something to do with the Euler equation, but I can't see how if it is where the sin terms disappear to...

Furthermore, they state that:

P_{if} = \frac{d}{dt}|a_{f}(t)|^{2} = \frac{2\pi}{\hbar}|V_{fi}|^{2}\frac{sin(E_{f} - E_{i})t/\hbar}{\pi(E_{f} - E_{i})} \stackrel{}{\rightarrow}\frac{2\pi}{\hbar}|V_{fi}|^2\delta(E_{f} - E_{i}) for large t

Which baffles me further - factors of \pi have krept in somehow!

Would be more than thankful is someone would be able to explain these steps! Thanks in advance :smile:
 
Physics news on Phys.org
raintrek said:
I'm trying to bridge the gap between several expressions describing the insertion of a constant perturbation:

a_{f}(t) = \frac{1}{i\hbar} V_{fi} \int^{t}_{0} e^{i(E_{f}-E_{i})t'/\hbar}dt' = \frac{1}{i\hbar}V_{fi}\frac{e^{i(E_{f}-E_{i})t/\hbar} - 1}{i(E_{f}-E_{i})/\hbar}

The numerator is of the form

e^{i\,x}-1=e^{i\,x/2}(e^{i\,x/2}-e^{-i\,x/2})=e^{i\,x/2}\,2\,i\,\sin\frac{x}{2}\Rightarrow |e^{i\,x}-1|=2\,\sin\frac{x}{2}

so squaring that

|e^{i\,x}-1|^2=4\,\sin^2\frac{x}{2}=4\,\frac{1-\cos x}{2}=2\,(1-\cos x)

Furthermore, they state that:

P_{if} = \frac{d}{dt}|a_{f}(t)|^{2} = \frac{2\pi}{\hbar}|V_{fi}|^{2}\frac{sin(E_{f} - E_{i})t/\hbar}{\pi(E_{f} - E_{i})} \stackrel{}{\rightarrow}\frac{2\pi}{\hbar}|V_{fi}|^2\delta(E_{f} - E_{i}) for large t

Which baffles me further - factors of \pi have krept in somehow!

For a proper \phi(x), holds

\lim_{k\rightarrow \infty}\int_{-\infty}^{+\infty}\frac{\sin(k\,x)}{\pi\,x} \phi(x)\,d\,x=\phi (0)\Rightarrow \lim_{k\rightarrow \infty}\int_{-\infty}^{+\infty}\frac{\sin(k\,x)}{\pi\,x}\,d\,x=\delta (0)

that's why the \pi disappears! :smile:
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top