Perturbed Hamiltonian Matrix for Quantum Harmonic Oscillator

Luke1121
Messages
14
Reaction score
0
Homework Statement

How to calculate the matrix elements of the quantum harmonic oscillator Hamiltonian with perturbation to potential of -2cos(\pi x)
The attempt at a solution
H=H_o +H' so H=\frac{p^2}{2m}+\frac{1}{2} m \omega x^2-2cos(\pi x)

I know how to find the matrix of the normal Hamiltonian as H \psi_j =E_j \psi_j then H_{ij}=<i|H|j>=E_j\delta_{ij}=(j+1/2)\hbar \omega \delta_{ij} therefore we get 1/2, 3/2,5/2 etc on the diagonal. However i am not sure how to apply this to this situation. Can I obtain the matrix just from here or do I need to do perturbation theory first?

Thanks
 
Physics news on Phys.org
You need to calculate ##\langle i | \hat{H}' | j \rangle = -2 \langle i | \cos(\pi x) | j \rangle##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top