Peskin Eq 11.72, mathematical identity

Hao
Messages
93
Reaction score
0
In Eq 11.72 in the QFT text by Peskin, the following equality is stated:

i\int\frac{d^{d}k_{E}}{(2\pi)^{d}}\log(k_{E}^{2}+m^{2})=-i\frac{\partial}{\partial\alpha}\int\frac{d^{d}k_{E}}{(2\pi)^{d}}\frac{1}{(k_{E}^{2}+m^{2})^{\alpha}}|_{\alpha=0}

This suggests that

\log(k_{E}^{2}+m^{2})=-\frac{\partial}{\partial\alpha}\frac{1}{(k_{E}^{2}+m^{2})^{\alpha}}|_{\alpha=0}

However, I can't see how this identity follows. Differentiating the right hand side gives

-\frac{\partial}{\partial\alpha}\frac{1}{(k_{E}^{2}+m^{2})^{\alpha}}|_{\alpha=0}=\frac{\alpha}{(k_{E}^{2}+m^{2})^{\alpha+1}}|_{\alpha=0}\rightarrow\frac{0}{(k_{E}^{2}+m^{2})^{1}}

Any help would be greatly appreciated.
 
Physics news on Phys.org
\partial_\alpha x^\alpha = \partial_\alpha e^{\alpha \log x} = e^{\alpha \log x} \log x= x^\alpha \log x
 
Awesome!

Thanks!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top