Pharaoh's Taylor series question from Yahoo Answers

Click For Summary
SUMMARY

The discussion focuses on solving van der Pol's equation using two numerical methods: the Taylor series method and the modified Euler method. The initial conditions are set as y(0) = 0.1 and y'(0) = 0.1. The Taylor series expansion yields an approximate solution of y(0.2) ≈ 0.108789, while the modified Euler method provides y(0.2) ≈ 0.10961. Both methods demonstrate effective approximation techniques for this differential equation.

PREREQUISITES
  • Understanding of van der Pol's equation
  • Familiarity with Taylor series expansion
  • Knowledge of the modified Euler method
  • Basic calculus and differential equations
NEXT STEPS
  • Study the derivation and application of Taylor series in solving differential equations
  • Learn about the modified Euler method and its advantages over traditional Euler methods
  • Explore numerical methods for solving nonlinear differential equations
  • Investigate the stability and accuracy of various numerical approximation techniques
USEFUL FOR

Mathematicians, engineers, and students in applied mathematics or physics who are interested in numerical methods for solving differential equations.

CaptainBlack
Messages
801
Reaction score
0
Part 1 of Pharaoh's Taylor series and modified Euler question from Yahoo Answers

consider van der pol's equation
y" - 0.2(1-y^2)y' + y = 0 y(0)=0.1 y'(0)=0.1
1)
You are asked to find the approximate solution for this problem using the Taylor series
method. Your expansion should include the first three non-zero terms and you should
work to six decimal places accuracy. First find the approximate solutions for both y (0.1)
and y’(0.1) using the first three non-zero terms of Taylor series expansion for each
function and then use this information to calculate the approximate solution at x = 0.2.
The Taylor series expansion about \(t=0\) is of the form:
\(y(t)=y(0)+y'(0)t+\frac{y''(0)t^2}{2}+.. \)​
We are given \(y(0)\) and \(y'(0)\) in the initial condition, and so from the equation we have:
\(y''(0) = 0.2(1-(y(0))^2)-y(0)=0.2(1-0.1^2)-0.1=-0.0802\)​
So the Taylor series about \(t=0\) is:
\(y(t)=0.1+0.1t-0.0401t^2+... \)​
and using the first three terms of this we have \(y(0.1)\approx 0.109599\), Also:
\(y'(t)=0.1-0.0802t+...\)​
and so \(y'(0.1) \approx 0.09198\)Now the Taylor expansion about \(t=0.1\) is:

\(y(t)=y(0.1)+(t-0.1)y'(0.1)+\frac{(t-0.1)^2y''(0.1)}{2}+...\)​
where \(y''(0.1)=0.2\left(1-(y(0.1))^2\right)y'(0.1)-y(0.1)=-0.08178796\).So:

\(y(0.2)\approx 0.109599+0.1\times 0.0198-0.1^2\times 0.8178796 = 0.108789 \) to 6 six DP​
 
Last edited:
Physics news on Phys.org
.2)
Next, the modified Euler method can be used to find the approximate solution for this problem. The modified Euler method is given by:

\(y_{n+1}=y_n+hf(x_n+\frac{h}{2},y_n+\frac{h}{2}f(x_n,y_n))\)

where \(f(x,y)=y"-0.2(1-y^2)y'+y\).

Using \(h=0.1\) and starting with \(y_0=0.1\), we can calculate the values of \(y_1\) and \(y_2\) as follows:

\(y_1\approx 0.1+0.1\left(0.1+\frac{0.1}{2}\left(0.1-0.2(1-0.1^2)0.1+0.1\right)\right)\approx 0.109625\)

\(y_2\approx 0.109625+0.1\left(0.2+\frac{0.1}{2}\left(0.2-0.2(1-0.109625^2)0.2+0.109625\right)\right)\approx 0.10961\)

So, the approximate solution at \(x=0.2\) using the modified Euler method is \(y(0.2)\approx 0.10961\). This is slightly different from the value obtained using the Taylor series method, but both methods provide a good approximation to the actual solution.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
9
Views
2K