kaksmet
- 81
- 0
Can anyone see what's not right?
In the phase space calculation of a 2 to 2 process I get to
I=\int dp_1d\Omega \frac{1}{(2\pi)^2}\frac{p_1^2}{2E_12E_2}\delta(E_1+E_2-E)
then I use
p_1=\sqrt{E_1^2+m_1^2} \Rightarrow dp_1=\frac{E_1}{\sqrt{E_1^2+m_1^2}}dE_1
thus
I = \int dE_1d\Omega \frac{1}{(2\pi)^2}\frac{E_1^2-m_1^2}{2E_12E_2}\frac{E_1}{\sqrt{E_1^2-m_1^2}}\delta(E_1+E_2-E)
=\int d\Omega \frac{\sqrt{E_1^2-m_1^2}}{16\pi^2E_2}
=\int d\Omega \frac{|p_1|}{16\pi^2E_2}
However, this is the right answer, which should be
\int d\Omega \frac{|p_1|}{16\pi^2E_{CM}}All ideas greatly appreciated
In the phase space calculation of a 2 to 2 process I get to
I=\int dp_1d\Omega \frac{1}{(2\pi)^2}\frac{p_1^2}{2E_12E_2}\delta(E_1+E_2-E)
then I use
p_1=\sqrt{E_1^2+m_1^2} \Rightarrow dp_1=\frac{E_1}{\sqrt{E_1^2+m_1^2}}dE_1
thus
I = \int dE_1d\Omega \frac{1}{(2\pi)^2}\frac{E_1^2-m_1^2}{2E_12E_2}\frac{E_1}{\sqrt{E_1^2-m_1^2}}\delta(E_1+E_2-E)
=\int d\Omega \frac{\sqrt{E_1^2-m_1^2}}{16\pi^2E_2}
=\int d\Omega \frac{|p_1|}{16\pi^2E_2}
However, this is the right answer, which should be
\int d\Omega \frac{|p_1|}{16\pi^2E_{CM}}All ideas greatly appreciated
Last edited: