- 457
- 40
When summing over photon polarizations for a given amplitude if it can be written as:
M = M^{\mu} \epsilon^{*}_{\mu}}
then
\sum_\epsilon |\epsilon^{*}_\mu M^\mu |^2 = \sum_\epsilon \epsilon^{*}_\mu epsilon\nu M^\mu M^{* \nu}
and you can replace the sum over polarizations with a -g_{\mu \nu}
But what if you cannot separate it out? Say your M is of the form:
M=\epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma + A\epsilon^{*}_\mu
Do you square it out, but then the first term will be a -g^{\alpha \alpha'} so each term gets summed over different indices?
\sum_\epsilon |M|^2 =\left( \epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma + A\epsilon^{*}_\mu\right)\left(\epsilon_{\nu \alpha' \beta' \sigma'} \epsilon^{\alpha'} q^{\beta'} p^{\sigma'} + A\epsilon_\nu \right)
\sum_\epsilon |M|^2 =\left( \epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma \epsilon_{\nu \alpha' \beta' \sigma'} \epsilon^{\alpha'} q^{\beta'} p^{\sigma'} + A\epsilon^{*}_\mu\epsilon_{\nu \alpha' \beta' \sigma'} \epsilon^{\alpha'} q^{\beta'} p^{\sigma'} + \epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma A\epsilon_\nu+ A\epsilon^{*}_\mu A\epsilon_\nu\right)
So my question is, for every pair of polarization vectors do I make the replacement to the metric tensor? Or do I multiply the entire thing by g mu nu?
M = M^{\mu} \epsilon^{*}_{\mu}}
then
\sum_\epsilon |\epsilon^{*}_\mu M^\mu |^2 = \sum_\epsilon \epsilon^{*}_\mu epsilon\nu M^\mu M^{* \nu}
and you can replace the sum over polarizations with a -g_{\mu \nu}
But what if you cannot separate it out? Say your M is of the form:
M=\epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma + A\epsilon^{*}_\mu
Do you square it out, but then the first term will be a -g^{\alpha \alpha'} so each term gets summed over different indices?
\sum_\epsilon |M|^2 =\left( \epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma + A\epsilon^{*}_\mu\right)\left(\epsilon_{\nu \alpha' \beta' \sigma'} \epsilon^{\alpha'} q^{\beta'} p^{\sigma'} + A\epsilon_\nu \right)
\sum_\epsilon |M|^2 =\left( \epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma \epsilon_{\nu \alpha' \beta' \sigma'} \epsilon^{\alpha'} q^{\beta'} p^{\sigma'} + A\epsilon^{*}_\mu\epsilon_{\nu \alpha' \beta' \sigma'} \epsilon^{\alpha'} q^{\beta'} p^{\sigma'} + \epsilon_{\mu \alpha \beta \sigma} \epsilon^{* \alpha} q^\beta p^\sigma A\epsilon_\nu+ A\epsilon^{*}_\mu A\epsilon_\nu\right)
So my question is, for every pair of polarization vectors do I make the replacement to the metric tensor? Or do I multiply the entire thing by g mu nu?