Photon that "fits" into its schwarzschild radius

AI Thread Summary
Photons with shorter wavelengths possess higher energy, leading to an increasing Schwarzschild radius. A calculation reveals that when half the wavelength equals the Schwarzschild radius, it results in a simple relationship involving the Planck length and mass. The discussion raises questions about the significance of these formulas and whether they imply any deeper physical meaning. It emphasizes that photons are massless and lack a well-defined size, complicating the classification of high-energy photons as black holes. The interaction of a photon with an electron could potentially create a black hole, highlighting the complexities of energy and space in quantum mechanics.
birulami
Messages
153
Reaction score
0
Photons with smaller and smaller wave lengths have a higher and higher energy and these engeries have an increasing Schwarzschild radius r_s. Consequently i can ask when half the wave length \lambda/2 is equal to r_s, such that one wave length fits into the sphere of the Schwarzschild radius.

I did the calculation and came out with \lambda/2 = r_s = \sqrt{Gh/c^3} =\sqrt{2\pi}l_p where l_p is the Planck length. Incidently the mass of this photon is \sqrt{2\pi}\,m_p with m_p being the Planck mass.

Now I wonder. Should I be at least a bit surprised about such extremely simple formulas or not. To put another way, is this as trivial as transforming ab=1 into a=1/b, or is there at least one physical statement needed between the Schwarzschild radius and this specific photon wave length? (Hmm, I hope someone can understand what I mean here. :confused:)
 
Science news on Phys.org
Photons are massless and their size is not a very well defined concept - and it is definitely not equal to the wavelength. Furthermore your statement is frame dependent as I can find an inertial frame of reference where your photon has a wavelength in the radio wave band.
 
Before getting all wrapped up with photons and therefore quantum mechanics, why do you think the Swarzchild solution (boundary conditions being static and spherical) is an appropriate one for light?
 
Last edited:
Orodruin said:
Photons are massless and their size is not a very well defined concept - and it is definitely not equal to the wavelength. Furthermore your statement is frame dependent as I can find an inertial frame of reference where your photon has a wavelength in the radio wave band.

Since a photon has no inertial reference frame and is only a single object, it makes no sense to say that an extremely high energy photon is or is not a black hole. Making that classification is meaningless in the absence of some other object with which to interact. Now add an electron to the system.
It is certainly possible that the photon + electron system will have enough energy in a small enough space to form a black hole. This scenario would have meaningful and observable consequences since neither particle would continue to exist after the intersection.
 
Thanks for your answers, except I don't get it where you all are heading. I did not mention the term "black hole", I did not say that the photon has a certain size and I did not pronounce any appropriateness of the Schwarzschild solution for light. All i did was toy with some physical formulas out of curiosity and got an, at least for me, surprisingly simple result. My question is basically whether this is at least mildly surprising or completely trivial.
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...

Similar threads

Replies
11
Views
2K
Replies
15
Views
2K
Replies
30
Views
4K
Replies
3
Views
200
Replies
3
Views
1K
Replies
8
Views
1K
Back
Top