Physical interpretation for system of ODE

Bruno Tolentino
Messages
96
Reaction score
0
If an ODE of 2nd order like this A y''(x) + B y'(x) + C y(x) = 0 has how physical/electrical interpretation a RLC circuit, so, how is the electrical interpretation of a system of ODE of 1nd and 2nd order?

<br /> \begin{bmatrix}<br /> \frac{d x}{dt}\\ <br /> \frac{d y}{dt}<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> \alpha_{11} &amp; \alpha_{12} \\ <br /> \alpha_{21} &amp; \alpha_{22}<br /> \end{bmatrix}<br /> <br /> \begin{bmatrix}<br /> x\\ <br /> y<br /> \end{bmatrix}
<br /> \begin{bmatrix}<br /> A_{11} &amp; A_{12} \\ <br /> A_{21} &amp; A_{22}<br /> \end{bmatrix}<br /> <br /> \begin{bmatrix}<br /> \frac{d^2 x}{dt^2}\\ <br /> \frac{d^2 y}{dt^2}<br /> \end{bmatrix}<br /> +<br /> \begin{bmatrix}<br /> B_{11} &amp; B_{12} \\ <br /> B_{21} &amp; B_{22}<br /> \end{bmatrix}<br /> <br /> \begin{bmatrix}<br /> \frac{d x}{dt}\\ <br /> \frac{d y}{dt}<br /> \end{bmatrix}<br /> +<br /> \begin{bmatrix}<br /> C_{11} &amp; C_{12} \\ <br /> C_{21} &amp; C_{22}<br /> \end{bmatrix}<br /> <br /> \begin{bmatrix}<br /> x\\ <br /> y<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> 0\\ <br /> 0<br /> \end{bmatrix}
 
Physics news on Phys.org
Can you interpret systems of DEs in terms of mixing in tanks?
 
Could it be a system of two damped oscillators coupled to each other?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top