Physical interpretation of Neumann-Dirichlet conditions

A.Magnus
Messages
138
Reaction score
0
I am working on a PDE problem like this:

Consider the wave equation with homogeneous Neumann-Dirichlet boundary conditions:

##\begin{align}
u_{tt} &= c^2U_{xx}, &&0<x<\mathscr l, t > 0\\
u_x(0, t) &=u(\mathscr l, t) = 0, &&t > 0\\
u(x, 0) &=f(x), &&0<x< \mathscr l\\
u_t(x, 0) &=g(x), &&0<x< \mathscr l
\end{align}##
(a) Give a physical interpretation for each line in the problem above.
(b) State the eigenvalue problem for ...
(c) ...
(d) ...

I am posting this asking for help on answering (a) since I do not have background whatsoever in either engineering or physics. I know how to work out the rest of questions after (a), since they are all math questions.

Thank you very much for your time and help.
 
Physics news on Phys.org
A.Magnus said:
I am working on a PDE problem like this:

Consider the wave equation with homogeneous Neumann-Dirichlet boundary conditions:

##\begin{align}
u_{tt} &= c^2U_{xx}, &&0<x<\mathscr l, t > 0\\
u_x(0, t) &=u(\mathscr l, t) = 0, &&t > 0\\
u(x, 0) &=f(x), &&0<x< \mathscr l\\
u_t(x, 0) &=g(x), &&0<x< \mathscr l
\end{align}##
(a) Give a physical interpretation for each line in the problem above.
(b) State the eigenvalue problem for ...
(c) ...
(d) ...

I am posting this asking for help on answering (a) since I do not have background whatsoever in either engineering or physics. I know how to work out the rest of questions after (a), since they are all math questions.

Thank you very much for your time and help.

Well, it's a wave equation in one dimension. c is the propagation speed of the wave. The first equation is just the wave propagation equation away from the boundary. The others are just boundary conditions. Try to express them in words, if u represents the amplitude of the wave
 
Dick said:
Well, it's a wave equation in one dimension. c is the propagation speed of the wave. The first equation is just the wave propagation equation away from the boundary. The others are just boundary conditions. Try to express them in words, if u represents the amplitude of the wave

Thank you.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top