Bobjoesmith
				
				
			 
			
	
	
	
		
	
	
			
		
		
			
			
				- 2
 
- 1
 
- TL;DR
 - I am wondering how a quantum field can be represented as a tensor product of a vector space and an endomorphism of a subspace of a Hilbert space (which is how it is represented in a paper I am reading about the Whitman Axioms), and what this tensor product actually represents.
 
Sorry in advance if this question doesn't make sense.
Anyway, I am reading a paper about quantum field theory and the Whitman Axioms (http://users.ox.ac.uk/~mert2060/GeomQuant/Wightman-Axioms.pdf), and it describes a field (Ψ) as
Ψ:𝑀→𝑉⊗End(𝐷)
where 𝑀 is a spacetime manifold, 𝑉 is a vector space, and 𝐷 is a dense subspace of a Hilbert space. My question is what 𝑉⊗End(𝐷) physically represents?
Once again thanks for any help.
				
			Anyway, I am reading a paper about quantum field theory and the Whitman Axioms (http://users.ox.ac.uk/~mert2060/GeomQuant/Wightman-Axioms.pdf), and it describes a field (Ψ) as
Ψ:𝑀→𝑉⊗End(𝐷)
where 𝑀 is a spacetime manifold, 𝑉 is a vector space, and 𝐷 is a dense subspace of a Hilbert space. My question is what 𝑉⊗End(𝐷) physically represents?
Once again thanks for any help.