Physics help on pulleys and tension

princess_7777
Messages
3
Reaction score
0
2000M3. A pulley of radius R1 and rotational inertia I1 is mounted on an axle with negligible friction. A light cord passing over the pulley has two blocks of mass m attached to either end, as shown above. Assume that the cord does not slip on the pulley. Determine the answers to parts (a) and (b) in terms of m, R1, I1, and fundamental constants.
a. Determine the tension T in the cord.
b. One block is now removed from the right and hung on the left. When the system is released from rest, the three blocks on the left accelerate downward with an acceleration g/3 . Determine the following.
i. The tension T3 in the section of cord supporting the three blocks on the left
ii. The tension Tl in the section of cord supporting the single block on the right
iii. The rotational inertia I1 of the pulley

c. The blocks are now removed and the cord is tied into a loop, which is passed around the original pulley and a second pulley of radius 2R1 and rotational inertia 16I1. The axis of the original pulley is attached to a motor that rotates it at angular speed w1, which in turn causes the larger pulley to rotate. The loop does not slip on the pulleys. Determine the following in terms of I1, RI, and w1.
i. The angular speed w2 of the larger pulley
ii. The angular momentum L2 of the larger pulley
iii. The total kinetic energy of the system

PHP:
Code:
Code:
 
Last edited:
Physics news on Phys.org
You need to show your work before you get help. What have you done with this question?
 
well for (a) i tried it by using the equation and got 42,129.91
ii.: 6,006.23
 
The answer to all the questions is \pi.
 
princess_7777 said:
well for (a) i tried it by using the equation and got 42,129.91
ii.: 6,006.23

:confused: By using what equation? What values did you use? I don't see any numerical values given in the question.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top