Pigeonhole Principle and the Arithmetic Mean

Dschumanji
Messages
153
Reaction score
1
My discrete mathematics book gives the following definition for the pigeonhole principle:

If m objects are distributed into k containers where m > k, then one container must have more than \lfloor\frac{m-1}{k}\rfloor objects.

It then states as a corollary that the arithmetic mean of a set of numbers must be in between the smallest and largest numbers of the set. No proof is given, it pretty much just says "well it's just obvious that this is the case."

I think it is obvious that the arithmetic mean of a set of numbers is in between its smallest and largest values. What isn't obvious to me is how their definition of the pigeonhole principle leads to the corollary. Can anyone help me out?
 
Mathematics news on Phys.org
Hmmm... well I can interpret it so that the arithmetic mean is larger than the smallest number:

Taking the mean of numbers n1,...,nk is the same thing as having k containers with ni objects in the ith container, and then re-distributing them so that each container has an even amount. (the number of objects in each container is the mean) WLOG suppose that n1 is the smallest number (otherwise just re-arrange). There must be at least n1*k objects, and hence by the pigeonhole principle, one container (and hence all of them) must have more than the floor of (n1k-1)/k = n1-1objects. Hence they have at least n1 objects each.

There are missing details in the case that the mean is not exactly an integer, but then the containers each hold a number of objects that is smaller than the mean so it still works.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top