Please explain the difference between these fractions w/ radical

AI Thread Summary
The discussion centers on the correct simplification of the expression -√6/4 + √2/4. The original claim that it simplifies to - (√6 + √2)/4 is incorrect; the correct form is (-√6 + √2)/4. The confusion arises from the misplacement of the negative sign, which should remain with √6 rather than being distributed across the entire expression. Proper use of parentheses and understanding the order of operations is crucial in such simplifications. Clarifying these points resolves the misunderstanding regarding the manipulation of the fractions.
opus
Gold Member
Messages
717
Reaction score
131

Homework Statement


For the solution to a given problem, in the second to last step I had:
##-\frac{\sqrt 6}{4} + \frac{\sqrt 2}{4}##

I stated next that the solution was ##-\frac{\sqrt{6}+\sqrt{2}}{4}##

I was told this was incorrect and that the correct solution is ##\frac{-\sqrt{6}+\sqrt{2}}{4}##

Homework Equations

The Attempt at a Solution


Could someone explain this error to me? Is it not true that ##-\frac{a}{b}=\frac{-a}{b}=\frac{a}{-b}##?
Or is this case different because I have an expression on the top, not just a single variable?
 
Physics news on Phys.org
Screenshot attached for reference.
Screen Shot 2018-06-21 at 4.25.54 PM.png
 

Attachments

  • Screen Shot 2018-06-21 at 4.25.54 PM.png
    Screen Shot 2018-06-21 at 4.25.54 PM.png
    5.4 KB · Views: 557
opus said:

Homework Statement


For the solution to a given problem, in the second to last step I had:
##-\frac{\sqrt 6}{4} + \frac{\sqrt 2}{4}##

I stated next that the solution was ##-\frac{\sqrt{6}+\sqrt{2}}{4}##

I was told this was incorrect and that the correct solution is ##\frac{-\sqrt{6}+\sqrt{2}}{4}##

Homework Equations

The Attempt at a Solution


Could someone explain this error to me? Is it not true that ##-\frac{a}{b}=\frac{-a}{b}=\frac{a}{-b}##?
##-\frac{a}{b}=\frac{-a}{b}## is true. So ##-\frac{\sqrt 6}{4} =\frac{-\sqrt 6}{4}##and ##\frac{-\sqrt 6}{4}+\frac{\sqrt2}{4}=\frac{-\sqrt 6+\sqrt2}{4}##
 
  • Like
Likes opus
opus said:

Homework Statement


For the solution to a given problem, in the second to last step I had:
##-\frac{\sqrt 6}{4} + \frac{\sqrt 2}{4}##

I stated next that the solution was ##-\frac{\sqrt{6}+\sqrt{2}}{4}##

I was told this was incorrect and that the correct solution is ##\frac{-\sqrt{6}+\sqrt{2}}{4}##

Homework Equations

The Attempt at a Solution


Could someone explain this error to me? Is it not true that ##-\frac{a}{b}=\frac{-a}{b}=\frac{a}{-b}##?
Or is this case different because I have an expression on the top, not just a single variable?

You are guilty of sloppy use (or non-use) of parentheses:
$$-\frac{a}{b} + \frac{c}{b} $$
means that you subtract the fraction ##\frac{a}{b}## from the fraction ##\frac{c}{b}##, and since they have the same denominator, you can combine the numerators as ##c-a##. That is, you get
$$\frac{c-a}{b},$$
which can be written as $$\frac{-a + c}{b}.$$
If you write
$$-\frac{a+c}{b}$$
that means $$- \left( \frac{a+c}{b} \right),$$
which was not what you started with.

Remember the priority order of mathematical operations: reading from left to right, parentheses have precedence over everything, then powers have precedence over multiplication or division, and these have precedence over addition and subtraction. Therefore, when we parse the expression ##-\frac{a}{b} + \frac{c}{b}##, we do "##-##" first, then ##a/b## then "##+##", then ##\frac{c}{b}##. In other words, had we used parentheses we would have had ##(- \frac{a}{b}) + (\frac{c}{b})##.
 
  • Like
Likes opus
Ahh I see. So by pulling that negative all the way out front, I negated the entire expression which is not equal to what I had. The negative needed to stay with the ##\sqrt 6##
 
  • Like
Likes FactChecker
opus said:
Ahh I see. So by pulling that negative all the way out front, I negated the entire expression which is not equal to what I had. The negative needed to stay with the ##\sqrt 6##

Yes, exactly, because in ##-\frac{a+c}{b}## the division has prioity over the first "##-##", so first we do the fraction, then we change its sign.

See, eg.,
http://www.purplemath.com/modules/orderops.htm
or
https://en.wikipedia.org/wiki/Order_of_operations
for rules about reading/writing mathematical expressions.
 
  • Like
Likes opus
Excellent, thanks guys.
 
  • Like
Likes berkeman
opus said:
Ahh I see. So by pulling that negative all the way out front, I negated the entire expression which is not equal to what I had. The negative needed to stay with the ##\sqrt 6##
Yes. If you still want to put a negative in front of the entire thing, you can put another '-' in front of the ##\sqrt 2##. That would give it a "double negative" and so leave it positive. ##-\frac {\sqrt 6} 4 + \frac {\sqrt 2} 4 = - \frac { \sqrt 6 - \sqrt 2 } 4 ##
 
  • Like
Likes opus
Thank you!
 
Back
Top