yungman
- 5,741
- 294
Homework Statement
To prove:
e^{ax} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+n^2}(a cos(nx) + n sin(nx))
For -\pi < x < \pi \hbox{ and a is real and not equal 0} [/tex]<br /> <br /> <h2>Homework Equations</h2><br /> <br /> Given:<br /> <br /> \int^{\pi}_{\pi} e^{ax} e^{-jnx}dx = \int^{\pi}_{\pi} C_n e^{jnx} e^{-jnx} dx = 2\pi C_n<br /> <br /> C_n = \frac{1}{2\pi} \int^{\pi}_{\pi} e^{ax} e^{-jnx}dx<br /> <br /> f(x)=e^{ax} = \sum_{n=-\infty}^{\infty} C_n e^{jnx}<br /> <br /> e^{ax} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a-jn} e^{jnx}<br /> <br /> <h2>The Attempt at a Solution</h2><br /> <br /> e^{ax} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a-jn} e^{jnx} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+ n^2}(a+jn)[cos(nx) + jsin(nx)]<br /> <br /> (-1)^{-n}=(-1)^n \Rightarrow \sum_{n=-\infty}^{\infty}\frac{j(-1)^n n}{a^2+ n^2} = 0<br /> <br /> \Rightarrow e^{ax} = \frac{asinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+ n^2}[cos(nx) + jsin(nx)]<br /> <br /> I cannot see how to get from this to this:<br /> <br /> e^{ax} = \frac{sinh(\pi a)}{\pi}\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{a^2+n^2}(a cos(nx) + n sin(nx))<br /> <br /> Please help me.<br /> <br /> Thanks<br /> <br /> Alan
Last edited: