yungman
- 5,741
- 294
I worked out and verify these two formulas:
\int_0^\pi \cos(x sin(\theta)) d\theta \;=\;\ \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n} \pi (1)(3)(5)...(2n-1)}{(2)(4)(6)...(2n)(2n!)}\;=\; \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n} \pi}{(2^2)(4^2)(6^2)...(2n)^2}
\int_0^\pi \sin(x sin(\theta)) d\theta \;=\;\sum_0^{\infty} \frac {(-1)^n 2x^{2n+1}}{(2n+1)!} \frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))} \;=\;\;\sum_0^{\infty} \frac {(-1)^n 2x^{2n+1}}{3^2 \cdot 5^2\cdot 7^2\cdot \cdot \cdot \cdot (2n+1)^2}But if you look at page 7 of this article:http://www.math.kau.se/mirevine/mf2bess.pdf
I verified these two statements to be correct:
J_0(x)=\frac{1}{\pi}\int_0^{\pi}\cos(x\sin\theta)d\theta=\frac{1}{2\pi}\int_0^{2\pi}\cos(x\sin\theta)d\theta
\frac{1}{2\pi}\int_0^{2\pi}\sin(x\sin\theta)d\theta=0
But then it concluded
J_0(x)=\frac{1}{\pi}\int_0^{\pi}e^{jx\sin\theta}d\theta
Which implied ##\int_0^\pi \sin(x sin(\theta)) d\theta=0##. I cannot verify this. I can agree with ##\int_0^{2\pi} \sin(x sin(\theta)) d\theta=0##.
But as you can see ##\int_0^\pi \sin(x sin(\theta)) d\theta \;=\;\sum_0^{\infty} \frac {(-1)^n 2x^{2n+1}}{3^2 \cdot 5^2\cdot 7^2\cdot \cdot \cdot \cdot (2n+1)^2}≠0##. You cannot just jump from integrating over ##2\pi## back to ##\pi##.
I verified that ##J_0(x)=\frac{1}{\pi}\int_0^{\pi}e^{jx\sin\theta}d\theta## from other sources. So what am I missing? Please help.
Thanks
\int_0^\pi \cos(x sin(\theta)) d\theta \;=\;\ \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n} \pi (1)(3)(5)...(2n-1)}{(2)(4)(6)...(2n)(2n!)}\;=\; \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n} \pi}{(2^2)(4^2)(6^2)...(2n)^2}
\int_0^\pi \sin(x sin(\theta)) d\theta \;=\;\sum_0^{\infty} \frac {(-1)^n 2x^{2n+1}}{(2n+1)!} \frac{2\cdot 4\cdot 6\cdot \cdot \cdot \cdot (2n)}{3\cdot 5\cdot 7\cdot \cdot \cdot (2n+1))} \;=\;\;\sum_0^{\infty} \frac {(-1)^n 2x^{2n+1}}{3^2 \cdot 5^2\cdot 7^2\cdot \cdot \cdot \cdot (2n+1)^2}But if you look at page 7 of this article:http://www.math.kau.se/mirevine/mf2bess.pdf
I verified these two statements to be correct:
J_0(x)=\frac{1}{\pi}\int_0^{\pi}\cos(x\sin\theta)d\theta=\frac{1}{2\pi}\int_0^{2\pi}\cos(x\sin\theta)d\theta
\frac{1}{2\pi}\int_0^{2\pi}\sin(x\sin\theta)d\theta=0
But then it concluded
J_0(x)=\frac{1}{\pi}\int_0^{\pi}e^{jx\sin\theta}d\theta
Which implied ##\int_0^\pi \sin(x sin(\theta)) d\theta=0##. I cannot verify this. I can agree with ##\int_0^{2\pi} \sin(x sin(\theta)) d\theta=0##.
But as you can see ##\int_0^\pi \sin(x sin(\theta)) d\theta \;=\;\sum_0^{\infty} \frac {(-1)^n 2x^{2n+1}}{3^2 \cdot 5^2\cdot 7^2\cdot \cdot \cdot \cdot (2n+1)^2}≠0##. You cannot just jump from integrating over ##2\pi## back to ##\pi##.
I verified that ##J_0(x)=\frac{1}{\pi}\int_0^{\pi}e^{jx\sin\theta}d\theta## from other sources. So what am I missing? Please help.
Thanks