Point-Source derivative form Gauss's law valid?

ShamelessGit
Messages
38
Reaction score
0
I reviewed Maxwell's equations today and I was upset to find that the volume integral of the derivative form of Gauss's equation seems to be 0 for point sources when it should come out to be Q/(electro constant). This comes from the fact that the gradient is equal to 0 and anything else you do to 0 appears to make it stay zero.

By the way I checked both versions of Gauss's law on valid field equations that did not have singularities and everything seemed to work out fine. (For instance, I used the integral form of gauss's law to create a field equation for gravity inside a sphere of uniform density to check the derivative form of Gauss's law)

What I did (and sorry I don't know how to make the math look pretty like you other guys do):

It looks like the equation for the field of a point source is -kq(x/r^3, y/r^3, z/r^3) where r^2 = x^2 + y^2 + z^2 and k = 1/4/pi/(electro constant). You can use Pythagoras's theorem to check that the magnitude of this vector is kq/r^2. When I took the divergence for x I got -1/(x^2 + y^2 + z^2)^1.5 + 3x^2/(x^2 + y^2 + z^2)^2.5 ... (pattern continues for y and z). Which equals -3/r^3 + 3(x^2 + y^2 + z^2)/r^5 = 3(1/r^3 - 1/r^3) = 0. Maybe you should check to make sure I did this right. This is what you would expect from Gauss's theorem I think because the charge density is zero everywhere except at the point source. However, taking the volume integral of this should give you kq4pi = q/(electro constant).

1. Have I made a mistake?

2. If not, is there a way to resolve this issue with the singularity to make Gauss's law valid in this case?
 
Last edited:
Physics news on Phys.org
The problem is there is a singularity at the origin. The diivergence is not definable there.

Using spherical coordinates to make life easier, with vectors in bold,

D = Dr r where r = unit vector in r direction,
so
div D = (1/r2)∂/∂r(r2Dr)
which at r = 0 gives ∞ for the 1/r2 part and zero for the partial derivative, and of course Er= Dr0.

So what is zero times infinity? Trouble, that's what ...

Possibly one can fool around with the δ function to get around this. Any takers?

Somehow you did not take div D correctly. I suspect you "used" the ∞ times zero thing and got beached. As you probably know, you can "prove" 1 = 2 by falling in that trap.

P.S. the divergence theorem is OK because it multiplies div D by volume element dv = (4/3)πdr3 surrounding the point charge. dv is infinitesmally small but not zero, whereas a point charge has identically zero volume.
By the same token, the surface element dA surrounding dv is non-zero.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top