1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Pointwise convergence and uniform convergence

  1. Mar 29, 2010 #1
    1. The problem statement, all variables and given/known data

    Define the sequence [tex]\displaystyle f_n : [0,\infty) \to
    \left[0,\frac{\pi}{2}\right)[/tex] by [tex]f_n(x) := \tan^{-1}(nx), x \geq
    0[/tex].

    2. Relevant equations

    Prove that [tex]f_n[/tex] converges pointwise, but not uniformly on
    [tex][0,\infty)[/tex].

    Prove that [tex]f_n[/tex] converges uniformly on [tex][t, \infty)[/tex] for [tex]t >
    0[/tex].

    3. The attempt at a solution

    [tex]\displaystyle \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty}
    \tan^{-1} (nx) = 0[/tex] for [tex]x = 0[/tex].

    [tex]\displaystyle \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty}
    \tan^{-1} (nx) = \frac{\pi}{2}[/tex] for [tex]x \in (0, \infty)[/tex].

    Let [tex]\displaystyle f : [0, \infty) \to \left[0, \frac{\pi}{2}
    \right)[/tex] be defined by
    [tex]
    \begin{align*}
    f(x) = \left\{
    \begin{array}{ll}
    0 & \text{ if } x = 0 \\
    \dfrac{\pi}{2} & \text{ if } x > 0
    \end{array}
    \right.
    \end{align*}
    [/tex]

    Therefore [tex]f_n[/tex] converges pointwise to [tex]f[/tex].

    Is function [tex]f[/tex] correct? How can I prove the rest?
    1. The problem statement, all variables and given/known data



    2. Relevant equations



    3. The attempt at a solution
     
  2. jcsd
  3. Mar 29, 2010 #2

    HallsofIvy

    User Avatar
    Science Advisor

    Yes, that is correct. Now, just observe that each function [itex]tan^{-1}(nx)[/itex] is continuous for all x while f(x) is not continuous at x= 0. If convergence were uniform, the limit function would also be continuous.
     
  4. Mar 29, 2010 #3
    Thanks. I found a theorem that says if [tex]f_n[/tex] converges uniformly to [tex]f[/tex] then [tex]f[/tex] must be continuous. Is it enough to say that since [tex]f[/tex] is
    discontinuous at [tex]0[/tex], [tex]f_n[/tex] cannot converge uniformly to [tex]f[/tex] on [tex][0,
    \infty)[/tex]?

    Is the following correct for the second question?

    For any [tex]\varepsilon > 0[/tex] there must be an [tex]N \in \mathbb{N}[/tex] such
    that for all [tex]n > N[/tex] and for all [tex]x \in [t, \infty)[/tex]
    [tex]
    \begin{align*}
    \abs{\tan^{-1}(nx) - \frac{\pi}{2}} <& \varepsilon \\
    \frac{\pi}{2} - \tan^{-1}(nx) < & \varepsilon \\
    \frac{\pi}{2} - \varepsilon < & \tan^{-1}(nx) \\
    \tan \left(\frac{\pi}{2} - \varepsilon \right) < & nx \\
    \frac{\tan (\frac{\pi}{2} - \varepsilon)}{x} < & n
    \end{align*}
    [/tex]

    Therefore choose [tex]\displaystyle N = \frac{\tan (\frac{\pi}{2} -
    \varepsilon)}{t}[/tex]. Then for any [tex]x \in [t, \infty)[/tex],
    [tex]
    \begin{align*}
    \abs{f_n(x) - f(x)} = \abs{\tan^{-1}(nx) - \frac{\pi}{2}} \leq
    \varepsilon
    \end{align*}
    [/tex]
    whenever [tex]n > N[/tex]. Hence [tex]f_n[/tex] converges uniformly to [tex]f[/tex] in [tex][t,
    \infty)[/tex].
     
  5. Mar 29, 2010 #4
    Yes, this is sometimes called the Uniform Limit Theorem and is fine to use (The above poster mentioned it).
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook