Poisson's Formula for the half space

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Formula Space
Click For Summary
The discussion focuses on Poisson's formula for the half-space, detailing the transformation of points through the reflection map and the formulation of the Green's function for the domain R^3_+. The fundamental solution is defined as Φ = 1/(4π ||x||), leading to the corrector function φ^x(y) = 1/(4π ||y - \bar{x}||). The outward-pointing unit normal vector field is specified, and the derivative of the Green's function G(x,y) is computed in the direction of this vector field. The author seeks feedback on their approach and inquires if they can continue their work.
docnet
Messages
796
Reaction score
488
Homework Statement
psb
Relevant Equations
psb
Hi all, thanks in advance for any constructive feedback. :bow:

Screen Shot 2021-03-05 at 11.22.59 PM.png
Screen Shot 2021-03-05 at 11.23.04 PM.png


Definition:
If ##x\in R^n\backslash \{0\}## then the map ##\Lambda## takes the point ##x## into ##\bar{x}\in R^n\backslash R^+_3## given by ##\bar{x}=\{x_1,x_2,-x_3\}##

We take the reflected point ##\bar{x}## and the fundamental solution
$$\Phi=\frac{1}{4\pi ||x||}$$ then
$$\phi^x(y)=\frac{1}{4\pi ||y-\bar{x}||}$$
and hence $$G(x,y)=\frac{1}{4\pi ||y-x||}-\frac{1}{4\pi ||y-\bar{x}||}$$ is the green's function for ##R^+_3##

The outward pointing unit normal vector field on the boundary is given by a function ##\nu## that assigns a unit vector ##-\vec{e}_3## to every point on ##x_3=0##.

The differential operator $$\frac{\partial}{\partial \nu}\rightarrow\frac{-\partial }{\partial x_3}$$

The derivative of ##G(x,y)## in the direction of the vector field ##\nu## is given by
$$\frac{\partial }{\partial \nu}G(x,y)= \frac{-\partial }{\partial x_3}\Big[\Phi (y-x)-\Phi(y-\bar{x})\Big]=\frac{-\partial }{\partial x_3}\Big[\frac{1}{4\pi ||y-x||}-\frac{1}{4\pi ||y-\bar{x}||}\Big]$$

Have I made mistakes so far, and can I continue working?
 
Physics news on Phys.org
update with "progress"

Definition:
If ##x\in R^n\backslash \{0\}##, then the map $$\Lambda(x_1,x_2,x_3)=(x_1,x_2,-x_3)$$ takes every point ##x## into ##\bar{x}=\{x_1,x_2,-x_3\}\in R^n\backslash R^3_+##

To solve the problem
$$
\begin{cases}
& \Delta u=f \quad \text{in} \quad R^3_+\\
& u= g \quad \text{on} \quad \partial R^3_+
\end{cases}
$$
We consider the reflected point ##\bar{x}## and the fundamental solution ##\Phi=\frac{1}{4\pi ||x||}##. The following problem
$$
\begin{cases}
& \Delta \phi^x=0 \quad \text{in} \quad R^3_+\\
& \phi^x(y)= \Phi(y-x) \quad \text{on} \quad \partial R^3_+
\end{cases}
$$
gives the corrector function
$$\phi^x(y)=\frac{1}{4\pi ||y-\bar{x}||}$$
and hence the green's function is $$G(x,y)=\frac{1}{4\pi ||y-x||}-\frac{1}{4\pi ||y-\bar{x}||}$$
The outward-pointing unit normal vector field on the set ##\{x_3=0\}## is given by a function ##\nu## that assigns the unit vector ##-\vec{e}_3## to every point on the set ##\{x_3=0\}##. Let us take the differential operator $$\frac{\partial}{\partial \nu}\Rightarrow\frac{\partial }{\partial (-\vec{e}_3)}$$
and compute the derivative of ##G(x,y)## in the direction ##\nu## on the set ##\{x_3=0\}## in the flat Euclidean connection
$$\frac{\partial }{\partial (-\vec{e}_3)}G(x,y)\Rightarrow \frac{1}{4\pi}\frac{\partial }{\partial (-\vec{e}_3)}\Big[\frac{1}{ ||y-x||}-\frac{1}{||y-\bar{x}||}\Big]$$
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...