Poisson's Formula for the half space

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Formula Space
docnet
Messages
796
Reaction score
488
Homework Statement
psb
Relevant Equations
psb
Hi all, thanks in advance for any constructive feedback. :bow:

Screen Shot 2021-03-05 at 11.22.59 PM.png
Screen Shot 2021-03-05 at 11.23.04 PM.png


Definition:
If ##x\in R^n\backslash \{0\}## then the map ##\Lambda## takes the point ##x## into ##\bar{x}\in R^n\backslash R^+_3## given by ##\bar{x}=\{x_1,x_2,-x_3\}##

We take the reflected point ##\bar{x}## and the fundamental solution
$$\Phi=\frac{1}{4\pi ||x||}$$ then
$$\phi^x(y)=\frac{1}{4\pi ||y-\bar{x}||}$$
and hence $$G(x,y)=\frac{1}{4\pi ||y-x||}-\frac{1}{4\pi ||y-\bar{x}||}$$ is the green's function for ##R^+_3##

The outward pointing unit normal vector field on the boundary is given by a function ##\nu## that assigns a unit vector ##-\vec{e}_3## to every point on ##x_3=0##.

The differential operator $$\frac{\partial}{\partial \nu}\rightarrow\frac{-\partial }{\partial x_3}$$

The derivative of ##G(x,y)## in the direction of the vector field ##\nu## is given by
$$\frac{\partial }{\partial \nu}G(x,y)= \frac{-\partial }{\partial x_3}\Big[\Phi (y-x)-\Phi(y-\bar{x})\Big]=\frac{-\partial }{\partial x_3}\Big[\frac{1}{4\pi ||y-x||}-\frac{1}{4\pi ||y-\bar{x}||}\Big]$$

Have I made mistakes so far, and can I continue working?
 
Physics news on Phys.org
update with "progress"

Definition:
If ##x\in R^n\backslash \{0\}##, then the map $$\Lambda(x_1,x_2,x_3)=(x_1,x_2,-x_3)$$ takes every point ##x## into ##\bar{x}=\{x_1,x_2,-x_3\}\in R^n\backslash R^3_+##

To solve the problem
$$
\begin{cases}
& \Delta u=f \quad \text{in} \quad R^3_+\\
& u= g \quad \text{on} \quad \partial R^3_+
\end{cases}
$$
We consider the reflected point ##\bar{x}## and the fundamental solution ##\Phi=\frac{1}{4\pi ||x||}##. The following problem
$$
\begin{cases}
& \Delta \phi^x=0 \quad \text{in} \quad R^3_+\\
& \phi^x(y)= \Phi(y-x) \quad \text{on} \quad \partial R^3_+
\end{cases}
$$
gives the corrector function
$$\phi^x(y)=\frac{1}{4\pi ||y-\bar{x}||}$$
and hence the green's function is $$G(x,y)=\frac{1}{4\pi ||y-x||}-\frac{1}{4\pi ||y-\bar{x}||}$$
The outward-pointing unit normal vector field on the set ##\{x_3=0\}## is given by a function ##\nu## that assigns the unit vector ##-\vec{e}_3## to every point on the set ##\{x_3=0\}##. Let us take the differential operator $$\frac{\partial}{\partial \nu}\Rightarrow\frac{\partial }{\partial (-\vec{e}_3)}$$
and compute the derivative of ##G(x,y)## in the direction ##\nu## on the set ##\{x_3=0\}## in the flat Euclidean connection
$$\frac{\partial }{\partial (-\vec{e}_3)}G(x,y)\Rightarrow \frac{1}{4\pi}\frac{\partial }{\partial (-\vec{e}_3)}\Big[\frac{1}{ ||y-x||}-\frac{1}{||y-\bar{x}||}\Big]$$
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top