Potential Energy of an Atom Due to Its Charge Distribution

AI Thread Summary
The discussion centers on calculating the potential energy of an atomic nucleus modeled as a uniformly charged sphere. The initial approach used Gauss' law to derive the electric field and energy density but led to an incorrect total energy calculation. The correct method involves integrating the energy density over all space to find the total potential energy. The potential energy for a uniformly charged nucleus is derived as (3Z^2.e^2)/(20.pi.epsilon-0.a). The user successfully resolved their confusion with guidance on integrating the electric field correctly.
Hoofbeat
Messages
48
Reaction score
0
Could someone help me with this:

=====
Q. The nucleus of an atom can be considered to be a charge of +Ze uniformly distributed throughout a sphere of radius a. Show that the potential energy of a nucleus due to its charge is (3Z^2.e^2)/(20.pi.epsilon-0.a). What would the potential energy be if the charge was spread uniformly over the surface of the nucleus.
=====

I used Gauss' law and spherical coordinates (we can ignore all components other than R due to symmetry) to give the electric field (radial component):

Er = +Ze/(4.pi.epsilon-0.a^2)

Energy Density = 1/2.Epsilon-0.E^2

But we want total energy, thus:

Energy = 1/2.Epsilon-0.E^2.Volume

Energy = (Z^2.e^2)/(24.pi.Epsilon-0.a)

However, this is clearly wrong. Could someone tell me what I'm doing wrong?! :frown: Thanks
 
Physics news on Phys.org
The electric field Er you computed is the electric field at the surface of the nucleus. But you want to find the total potential energy of the nucleus, which is the integral:

\int_{whole space} 1/2 \epsilon_0 E^2 dV

So you need to know the E every in space (use Gauss' law).
 
Thanks, I've now managed to solve the problem :D
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top