Saladsamurai
- 3,009
- 7
Homework Statement
Solve x^2y'' - y = 0 using Power Series Solution expanding about xo = 2.
The Attempt at a Solution
First I expand the coefficient of y" (i.e. x2) about xo:
TS[x^2]|_{x_o=2} = 4+ 4(x - 2) + (x - 2)^2
Assuming the solution takes the form:
y(x) = \sum_0^{\infty}a_n(x - 2)^n \Rightarrow y''(x) = \sum_2^{\infty}n(n-1)a_n(x - 2)^{n - 2}
Plugging the above into the original DE gives:
<br /> (4+ 4(x - 2) + (x - 2)^2)\sum_2^{\infty}n(n-1)a_n(x - 2)^{n - 2} -<br /> \sum_0^{\infty}a_n(x - 2)^n = <br /> 0<br />Distributing we have:
4\sum_2^{\infty}n(n-1)a_n(x - 2)^{n - 2} + <br /> 4(x - 2)\sum_2^{\infty}n(n-1)a_n(x - 2)^{n - 2} +<br /> (x - 2)^2)\sum_2^{\infty}n(n-1)a_n(x - 2)^{n - 2} -<br /> \sum_0^{\infty}a_n(x - 2)^n = <br /> 0<br /> <br />
\Rightarrow <br /> 4\sum_2^{\infty}n(n-1)a_n(x - 2)^{n - 2} + <br /> 4\sum_2^{\infty}n(n-1)a_n(x - 2)^{n - 1} +<br /> \sum_2^{\infty}n(n-1)a_n(x - 2)^{n} -<br /> \sum_0^{\infty}a_n(x - 2)^n = <br /> 0<br /> \qquad(1)<br />
Now the problem with (1) is twofold:
i) The indices are not the same and ii) the exponents on x are not the same.
I am not sure how to handle this. I was thinking that I could add 2 to the n index in the first term and add 1 to the second and then run the summations from zero. I think that this should work since the factors of 'n' 'n-1' in each term that I augment will cause each term to drop out at n = 0 and n = 1 and hence they will not contribute to the sum.
Edit: Fail. I failed to notice that when I add 2 to the dummy variable 'n' I will no longer have the factor of n to cause the term to drop out at n=0.
Any help on this?
Last edited: