kvkenyon
- 21
- 0
Homework Statement
Find a power series representation for the function f(t) = \ln((1+2t)/(1-2t))
Homework Equations
f(t) = \ln((1+2t)/(1-2t))
The Attempt at a Solution
\ln(1+2t)-\ln(1-2t)
take derivative of f(t) expanded
\frac{2}{1+2t}+\frac{2}{1-2t}
2 \int \frac {1}{1-(-2t)} + 2 \int \frac{1}{1-2t}
2 \int \displaystyle\sum_{n=o}^{\infty} -2^n x^n + 2 \int \displaystyle\sum_{n=0}^{\infty} 2^n x^n
2 \int 1 - 2x + 4x^2 - 8x^3 + 16x^4 +... + 2 \int 1 + 2x + 4x^2 + 8x^3 +16x^4 +32x^5+...
then i combine them left with 2 \int 2 + 8x^2 + 32x^4 + ...
then i get stuck
Last edited: