Pressure in branching pipes when diameters are not equal

  • Thread starter Thread starter fraggordon
  • Start date Start date
  • Tags Tags
    Pipes Pressure
AI Thread Summary
To determine the pressures in branching pipes with unequal diameters, it's essential to apply the conservation of flow rate and energy principles. The flow rates in each branch must sum to the total flow, and pressure drops between branches need to be equal, leading to a system of equations that can be solved iteratively. Calculating the friction factors using the Moody chart and the Reynolds number is crucial for accurate results. Additionally, the assumption of no losses between sections simplifies the analysis, but if friction is present, flow distribution will depend on the branch geometry. Ultimately, more information, such as one of the pressures or total flow rate, is necessary to find the exact pressure drop between the branches.
fraggordon
Messages
1
Reaction score
0
TL;DR Summary
Trying to solve pressure in branching pipes with non-equal diameters. Inlet flow parameters are given.
Electrical engineer here hi!

I'm little bit out of my comfort zone trying to figure out the following fluid mechanics problem. I have a branching pipe similar to schematic below...

1652268253339.png


...and I'm trying to find the pressures in branches 1 (p1) and 2 (p2). The d1 and d2 are not equal (d1 = 0.1*d and d2 = 0.5*d) but the lengths l1 and l2 are equal. The inlet diameter (d), flow rate (Q), velocity (v) and pressure (p) are given.

Is it even possible to figure out the p1 and p2 with this little information? If so, where should I start? I imagine that at least following equations will be needed, but I guess I would need something else as well?

1) Conservation of flow rate: Q = Q1 + Q2
2) Conservation of energy (no losses or height difference): 0.5*density*v^2 + p = 0.5*density*v1^2 + p1 + 0.5*density*v2^2 + p2
 
Engineering news on Phys.org
Welcome!
Pressure along each branch will change from P1 to P2 values.
That equal delta pressure is what drives each flow.
Naturally, each branch will self-balance its flow percetage according to its own restriction.
 
Last edited:
Is this a homework problem? If so, we can move it to the homework forum.

You can find the pressure drop from p1 to p2, then p2 if you know p1 (or vice versa).

You know the diameters, lengths, and total flow. The next step is to calculate the flow rates in the two branches subject to the conditions that the sum of those two flow rates is equal to the total flow and the pressure drops are equal. This is an iterative calculation using a Moody chart (search the term).
 
Electrical Engineer, no problem.

Think about this as two resistors in parallel across a DC voltage.

The pressure ## P_i ## is analogous to the Voltage at node ## i ##

The loss of pressure in the pipe between nodes is given by ## \frac{f}{lD}\frac{v^2}{2g} ##

You'll want to convert from velocity to volumetric flow rate ## Q ## for each branch, assuming uniform velocity distribution across each branch.

Then you will have to find the Reynolds Number, and as others have pointed out, using it determine an initial estimate for the friction factor ## f ##

From there you are going to get a system of equations that looks something like this:

$$ Q = Q_1 + Q_2 $$

$$ Q_1 = Q_2 k \sqrt{ \frac{f_2}{f_1} } $$

Where ## k ## is a constant comprised of several parameters tied to each branch geometry.

You are going to assume a flow distribution, find the friction factors ## f ## from the Moody Diagram, solve and re-evaluate ## f ## based on the solutions until its change is negligible.

It appears that you are going to need some more information if you are going to actually find the pressure drop between 1 and 2. Namely one of the pressures or the total flow rate should get you there as others have pointed out.

EDIT:

Looking more carefully at your information (2) conservation of energy. Are you really to assume, no losses between section 1 and 2? If that's the case the pressure drop is trivial.

I believe you should have this instead:

$$ \frac{P_1}{\gamma} + z_1 + \frac{v_1^2}{2g} = \frac{P_2}{\gamma} + z_2 + \frac{v_2^2}{2g} + \sum_{1 \to 2 } h_l $$

Also, I'm not sure on this, but if there is no friction (inviscid flow) then the flow just splits 50/50 in each branch... regardless of actual branch diameter.

fraggordon said:
and I'm trying to find the pressures in branches 1 (p1) and 2 (p2).
The pressures in each branch will vary along their length linearly from the common pressure at their junction. So, when you say you are trying to find the "pressure in each branch", the answer is "where" not exactly a "what".
 
Last edited:
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top