Pressure in branching pipes when diameters are not equal

  • Thread starter Thread starter fraggordon
  • Start date Start date
  • Tags Tags
    Pipes Pressure
Click For Summary
SUMMARY

The discussion centers on calculating pressures in branching pipes with unequal diameters, specifically where d1 = 0.1*d and d2 = 0.5*d, while maintaining equal lengths l1 and l2. Key equations include conservation of flow rate (Q = Q1 + Q2) and conservation of energy, which must account for pressure drops across the branches. The iterative method involves using the Moody chart to determine friction factors and solving a system of equations to find flow rates and pressures in each branch. Additional information, such as one of the pressures or total flow rate, is necessary for precise calculations.

PREREQUISITES
  • Understanding of fluid mechanics principles, particularly conservation laws.
  • Familiarity with the Moody chart for determining friction factors.
  • Knowledge of Reynolds number and its significance in flow calculations.
  • Basic algebra for solving systems of equations related to flow rates.
NEXT STEPS
  • Study the application of the Moody chart in calculating friction factors for various flow conditions.
  • Learn how to calculate Reynolds number and its implications for flow regimes.
  • Explore iterative methods for solving systems of equations in fluid dynamics.
  • Investigate the effects of pressure losses in pipe systems and how to account for them in calculations.
USEFUL FOR

Electrical engineers, mechanical engineers, and students studying fluid mechanics who are involved in designing or analyzing piping systems with varying diameters.

fraggordon
Messages
1
Reaction score
0
TL;DR
Trying to solve pressure in branching pipes with non-equal diameters. Inlet flow parameters are given.
Electrical engineer here hi!

I'm little bit out of my comfort zone trying to figure out the following fluid mechanics problem. I have a branching pipe similar to schematic below...

1652268253339.png


...and I'm trying to find the pressures in branches 1 (p1) and 2 (p2). The d1 and d2 are not equal (d1 = 0.1*d and d2 = 0.5*d) but the lengths l1 and l2 are equal. The inlet diameter (d), flow rate (Q), velocity (v) and pressure (p) are given.

Is it even possible to figure out the p1 and p2 with this little information? If so, where should I start? I imagine that at least following equations will be needed, but I guess I would need something else as well?

1) Conservation of flow rate: Q = Q1 + Q2
2) Conservation of energy (no losses or height difference): 0.5*density*v^2 + p = 0.5*density*v1^2 + p1 + 0.5*density*v2^2 + p2
 
Engineering news on Phys.org
Welcome!
Pressure along each branch will change from P1 to P2 values.
That equal delta pressure is what drives each flow.
Naturally, each branch will self-balance its flow percetage according to its own restriction.
 
Last edited:
Is this a homework problem? If so, we can move it to the homework forum.

You can find the pressure drop from p1 to p2, then p2 if you know p1 (or vice versa).

You know the diameters, lengths, and total flow. The next step is to calculate the flow rates in the two branches subject to the conditions that the sum of those two flow rates is equal to the total flow and the pressure drops are equal. This is an iterative calculation using a Moody chart (search the term).
 
Electrical Engineer, no problem.

Think about this as two resistors in parallel across a DC voltage.

The pressure ## P_i ## is analogous to the Voltage at node ## i ##

The loss of pressure in the pipe between nodes is given by ## \frac{f}{lD}\frac{v^2}{2g} ##

You'll want to convert from velocity to volumetric flow rate ## Q ## for each branch, assuming uniform velocity distribution across each branch.

Then you will have to find the Reynolds Number, and as others have pointed out, using it determine an initial estimate for the friction factor ## f ##

From there you are going to get a system of equations that looks something like this:

$$ Q = Q_1 + Q_2 $$

$$ Q_1 = Q_2 k \sqrt{ \frac{f_2}{f_1} } $$

Where ## k ## is a constant comprised of several parameters tied to each branch geometry.

You are going to assume a flow distribution, find the friction factors ## f ## from the Moody Diagram, solve and re-evaluate ## f ## based on the solutions until its change is negligible.

It appears that you are going to need some more information if you are going to actually find the pressure drop between 1 and 2. Namely one of the pressures or the total flow rate should get you there as others have pointed out.

EDIT:

Looking more carefully at your information (2) conservation of energy. Are you really to assume, no losses between section 1 and 2? If that's the case the pressure drop is trivial.

I believe you should have this instead:

$$ \frac{P_1}{\gamma} + z_1 + \frac{v_1^2}{2g} = \frac{P_2}{\gamma} + z_2 + \frac{v_2^2}{2g} + \sum_{1 \to 2 } h_l $$

Also, I'm not sure on this, but if there is no friction (inviscid flow) then the flow just splits 50/50 in each branch... regardless of actual branch diameter.

fraggordon said:
and I'm trying to find the pressures in branches 1 (p1) and 2 (p2).
The pressures in each branch will vary along their length linearly from the common pressure at their junction. So, when you say you are trying to find the "pressure in each branch", the answer is "where" not exactly a "what".
 
Last edited:
  • Like
Likes   Reactions: Lnewqban

Similar threads

  • · Replies 31 ·
2
Replies
31
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
0
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 20 ·
Replies
20
Views
11K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 18 ·
Replies
18
Views
51K