pedja
- 14
- 0
\text{Let} ~ W_p ~ \text{be a Wagstaff number of the form :} W_p = \frac{2^p+1}{3}~, \text{where}~p>3
\text {Let's define }~S_0~ \text{as :}
S_0 =<br /> \begin{cases}<br /> 3/2, & \text{if } p \equiv 1 \pmod 4 \\<br /> 11/2, & \text{if } p \equiv 1 \pmod 6 \\<br /> 27/2, & \text{if} ~p \equiv 11 \pmod {12} ~\text{and}~p \equiv 1,9 \pmod {10} \\<br /> 33/2, & \text{if}~ p \equiv 11 \pmod {12} ~\text{and}~p \equiv 3,7 \pmod {10} \\<br /> \end{cases}
\text{Next define sequence}~S_i~\text{as :}
S_i =<br /> \begin{cases}<br /> S_0, & i=0 \\<br /> 8S^4_{i-1}-8S^2_{i-1}+1, & i>0<br /> \end{cases}
\text{How to prove following statement :}
\text{Conjecture :}
W_p=\frac{2^p+1}{3}~\text{is a prime iff}~S_{\frac{p-1}{2}} \equiv S_0 \pmod {W_p}
\text {Let's define }~S_0~ \text{as :}
S_0 =<br /> \begin{cases}<br /> 3/2, & \text{if } p \equiv 1 \pmod 4 \\<br /> 11/2, & \text{if } p \equiv 1 \pmod 6 \\<br /> 27/2, & \text{if} ~p \equiv 11 \pmod {12} ~\text{and}~p \equiv 1,9 \pmod {10} \\<br /> 33/2, & \text{if}~ p \equiv 11 \pmod {12} ~\text{and}~p \equiv 3,7 \pmod {10} \\<br /> \end{cases}
\text{Next define sequence}~S_i~\text{as :}
S_i =<br /> \begin{cases}<br /> S_0, & i=0 \\<br /> 8S^4_{i-1}-8S^2_{i-1}+1, & i>0<br /> \end{cases}
\text{How to prove following statement :}
\text{Conjecture :}
W_p=\frac{2^p+1}{3}~\text{is a prime iff}~S_{\frac{p-1}{2}} \equiv S_0 \pmod {W_p}
Last edited: