Probabilities of measuring ##\pm \hbar/2## along ##\hat{n}##?

Click For Summary
The discussion revolves around calculating the probabilities of measuring spin states ##\pm \hbar/2## along a new axis ##\hat{n}## when starting from a spin state aligned with the z-axis, ##|z+\rangle##. The key challenge is understanding how to express the state ##|z+\rangle## in the ##n## basis and what it means to measure eigenvalues along that axis. The transformation to the ##n## basis involves using angles ##\theta## and ##\phi## to express the state in terms of the new measurement direction. Ultimately, the probabilities of measuring ##+\hbar/2## and ##-\hbar/2## can be derived from the coefficients obtained in this transformation. Clarifying these concepts is essential for accurately determining the measurement probabilities.
happyparticle
Messages
490
Reaction score
24
Homework Statement
Probabilities of measuring ##\pm \hbar/2## along ##\hat{n}##?
Relevant Equations
##|+\rangle_n = cos(\theta/2)e^{-i\phi/2}|+\rangle +sin(\theta/2)e^{i\phi/2}|-\rangle##
##|-\rangle_n = sin(\theta/2)e^{-i\phi/2}|+\rangle -cos(\theta/2)e^{i\phi/2}|-\rangle##
Hi,

Given a spin in the state ##|z + \rangle##, i.e., pointing up along the z-axis what are the probabilities of measuring ##\pm \hbar/2## along ##\hat{n}##?

My problem is that I'm not sure to understand the statement. It seems like I have to find the probabilities of measuring an eigenvalue along ##\hat{n}##. What does that mean exactly? Is it the probability to measure ##\pm \hbar/2## in the ##n## basis?

I tried to find ## |+\rangle ## in the ##n## basis, which I think this is ##|z+\rangle## in the ##n## basis. I thought maybe it could help me.
I got ## |+\rangle = 1/2 (cos (\theta/2) e^{i\theta /2} |+ \rangle_n + sin (\theta/2)e^{i\theta /2} |- \rangle_n)##

I'm really confuse with this statement. I'm not sure to understand the difference between ##|z + \rangle## and ##|+\rangle##
 
Physics news on Phys.org
happyparticle said:
My problem is that I'm not sure to understand the statement. It seems like I have to find the probabilities of measuring an eigenvalue along ##\hat{n}##. What does that mean exactly?
The question is this. Imagine you have a system that produces electrons in the ##\ket{z+}## state. You can confirm this by setting up a measurement aparatus to measure the spin component about the z-axis and finding that every electron produced by your system behaves in the same way, corresponding to a measurement of ##+\frac \hbar 2##. Note that the z direction is simply some direction you have chosen in your experimental set-up.

Now, you leave your electron production system in place and re-orient your measurement aparatus along an axis ##\hat n##, represented by azimuthal and polar angles ##\theta, \phi##.

Each electron will behave in one of two ways, corresponding to the measurements of ##\pm \frac \hbar 2##. The question is: what is the probability that the electron is measured to have ##+\frac \hbar 2##; and what is the probability that the electron is measured to have ##-\frac \hbar 2##?
 
Last edited:
  • Like
Likes vanhees71 and topsquark
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
771
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K