Probabilities of measuring ##\pm \hbar/2## along ##\hat{n}##?

happyparticle
Messages
490
Reaction score
24
Homework Statement
Probabilities of measuring ##\pm \hbar/2## along ##\hat{n}##?
Relevant Equations
##|+\rangle_n = cos(\theta/2)e^{-i\phi/2}|+\rangle +sin(\theta/2)e^{i\phi/2}|-\rangle##
##|-\rangle_n = sin(\theta/2)e^{-i\phi/2}|+\rangle -cos(\theta/2)e^{i\phi/2}|-\rangle##
Hi,

Given a spin in the state ##|z + \rangle##, i.e., pointing up along the z-axis what are the probabilities of measuring ##\pm \hbar/2## along ##\hat{n}##?

My problem is that I'm not sure to understand the statement. It seems like I have to find the probabilities of measuring an eigenvalue along ##\hat{n}##. What does that mean exactly? Is it the probability to measure ##\pm \hbar/2## in the ##n## basis?

I tried to find ## |+\rangle ## in the ##n## basis, which I think this is ##|z+\rangle## in the ##n## basis. I thought maybe it could help me.
I got ## |+\rangle = 1/2 (cos (\theta/2) e^{i\theta /2} |+ \rangle_n + sin (\theta/2)e^{i\theta /2} |- \rangle_n)##

I'm really confuse with this statement. I'm not sure to understand the difference between ##|z + \rangle## and ##|+\rangle##
 
Physics news on Phys.org
happyparticle said:
My problem is that I'm not sure to understand the statement. It seems like I have to find the probabilities of measuring an eigenvalue along ##\hat{n}##. What does that mean exactly?
The question is this. Imagine you have a system that produces electrons in the ##\ket{z+}## state. You can confirm this by setting up a measurement aparatus to measure the spin component about the z-axis and finding that every electron produced by your system behaves in the same way, corresponding to a measurement of ##+\frac \hbar 2##. Note that the z direction is simply some direction you have chosen in your experimental set-up.

Now, you leave your electron production system in place and re-orient your measurement aparatus along an axis ##\hat n##, represented by azimuthal and polar angles ##\theta, \phi##.

Each electron will behave in one of two ways, corresponding to the measurements of ##\pm \frac \hbar 2##. The question is: what is the probability that the electron is measured to have ##+\frac \hbar 2##; and what is the probability that the electron is measured to have ##-\frac \hbar 2##?
 
Last edited:
  • Like
Likes vanhees71 and topsquark
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top