Probability - Condition/Marginal density and Expectation

cse63146
Messages
435
Reaction score
0

Homework Statement



Let X and Y be contnious random variables with joint probability density function -

f(x,y) = 10x^2y if 0<x<y<1 0 othewise

a) Determine P( Y &lt; \frac{X}{2})

b) Determine P(x \leq 1/2 | Y &lt; X^2)

c) Determine the marginal density functions of X and Y, respectively

d) Determine E[XY^2]

e) Determine E[Y|X = x]

g) Obtaine the probability density function of E[Y|X]

Homework Equations





The Attempt at a Solution



Did I set up the a - f correctly?

a)

\int^1_0\int^{X/2}_0 10x^2y dy dx

b) P(A|B) = \frac{P(A \cap B)}{P(B)} \rightarrow \frac{P(X \leq 1/2 \cap Y &lt; X^2)}{P(Y &lt; X^2)}

c)

F_Y (y) = \int^1_y 10x^2y dx F_X (x) = \int^x_0 10x^2y dy

d)
E[XY^2] = \int^1_0\int^x_0 xy^2 10x^2y dy dx

e)

F_{Y|X} (Y|X) = \frac{f(x,y)}{F_X (x)}

f)

E[Y|X] = \int^y_0 y F_{Y|X} (Y|X) dy

g) Not sure how to do this one.
 
Physics news on Phys.org
Any suggestions?

Got a type

e) Determine conditional density function of Y given X = x.

f) Detetmine E[Y|X]
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top