cse63146
- 435
- 0
Homework Statement
Let X and Y be contnious random variables with joint probability density function -
f(x,y) = 10x^2y if 0<x<y<1 0 othewise
a) Determine P( Y < \frac{X}{2})
b) Determine P(x \leq 1/2 | Y < X^2)
c) Determine the marginal density functions of X and Y, respectively
d) Determine E[XY^2]
e) Determine E[Y|X = x]
g) Obtaine the probability density function of E[Y|X]
Homework Equations
The Attempt at a Solution
Did I set up the a - f correctly?
a)
\int^1_0\int^{X/2}_0 10x^2y dy dx
b) P(A|B) = \frac{P(A \cap B)}{P(B)} \rightarrow \frac{P(X \leq 1/2 \cap Y < X^2)}{P(Y < X^2)}
c)
F_Y (y) = \int^1_y 10x^2y dx F_X (x) = \int^x_0 10x^2y dy
d)
E[XY^2] = \int^1_0\int^x_0 xy^2 10x^2y dy dx
e)
F_{Y|X} (Y|X) = \frac{f(x,y)}{F_X (x)}
f)
E[Y|X] = \int^y_0 y F_{Y|X} (Y|X) dy
g) Not sure how to do this one.