A Probability flux integrated over all space is mean momentum?

euphoricrhino
Messages
22
Reaction score
7
In Sakurai Modern Quantum Mechanics, I came across a statement which says probabiliy flux integrated over all space is just the mean momentum (eq 2.192 below). I was wondering if anybody can help me explain how this is obtained.
I can see that ##i\hbar\nabla## is taken as the ##\mathbf{p}## operator, but I don't see how the integration gives the mean of ##\mathbf{p}##.
Thanks in advance!

Screen Shot 2022-08-11 at 15.28.15.png
 
Physics news on Phys.org
The expectation value of the momentum is
$$\langle \vec{p} \rangle = \langle \psi|\hat{\vec{p}}|\psi \rangle = \int_{\mathbb{R}^3} \mathrm{d}^3 x \psi^*(t,\vec{x}) (-\mathrm{i} \hbar \vec{\nabla}) \psi(t,\vec{x}).$$
Now you can add the same expression with the ##\nabla## put to ##\psi^*## by partial integration and divide by 2:
$$\langle \vec{p} \rangle = \frac{1}{2} \int_{\mathbb{R}^3} \mathrm{d}^3 x (-\mathrm{i} \hbar) [\psi^*(t,\vec{x}) \vec{\nabla} \psi(t,\vec{x}) - \psi(t,\vec{x}) \vec{\nabla} \psi^*(t,\vec{x})].$$
Comparing this with Eq. (2.191) of the book you get immediately Eq. (2.192).
 
  • Like
Likes Lord Jestocost, gentzen, PeroK and 1 other person
Great, thanks a lot.
I missed the integration by part trick. This is awesome!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top