Probability function with specification for different range ?

RufusDawes
Messages
154
Reaction score
0
I understand a probability function can be defined according to range ?

So for example,

0>x f(x) = 0

for 0>x>100 f(x) = 1/100

to work out probability it is integration of that function.

So how does it work if for some other range there is a DIFFERENT functions ?

Is it that there will be multiple equations for probability depending on x ?
 
Physics news on Phys.org
RufusDawes said:
I understand a probability function can be defined according to range ?

So for example,

0>x f(x) = 0

for 0>x>100 f(x) = 1/100

to work out probability it is integration of that function.

So how does it work if for some other range there is a DIFFERENT functions ?

Is it that there will be multiple equations for probability depending on x ?

Hey RufusDawes.

You do the same thing, but break the integral up into pieces for each appropriate interval.

For expectation, variance etc: same thing: split up the integral according to the intervals and do the integration to get mean, variance, etc.
 
chiro said:
Hey RufusDawes.

You do the same thing, but break the integral up into pieces for each appropriate interval.

For expectation, variance etc: same thing: split up the integral according to the intervals and do the integration to get mean, variance, etc.

So what do I do when the upper limit of the range approaches a discrete value (a whole number) on both ranges.

If there are 2 functions one with a limit 0>x>1 and 1>=x>2 and the other is for x>=2 the integrals of the whole thing should = 1 ?

does that mean that I can use the value of 1 as the upper bit for the first integral as it is so small it won't affect the area ?
 
RufusDawes said:
So what do I do when the upper limit of the range approaches a discrete value (a whole number) on both ranges.

If there are 2 functions one with a limit 0>x>1 and 1>=x>2 and the other is for x>=2 the integrals of the whole thing should = 1 ?

does that mean that I can use the value of 1 as the upper bit for the first integral as it is so small it won't affect the area ?

You treat function 1 in range 1 and function 2 in range 2. As long the PDF is a valid probability density function, then it's ok to do this. Are the functions for 0 > x > 1 and 1 >= x > 2 analytic? In other words can you for each range describe a continuous analytic function?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top