MHB Probability of A Winning Dept Head Vote w/ 5 Faculty Members

  • Thread starter Thread starter InaudibleTree
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
The discussion focuses on calculating the probability that candidate A remains ahead of candidate B during a vote count among five faculty members, where A receives three votes and B receives two. The total number of voting arrangements is determined to be 10. For A to maintain a lead, the first two votes must be for A, leaving one A and two B votes to be counted afterward. Out of the possible arrangements, only two allow A to stay ahead throughout the tallying process. The final probability of A remaining ahead is calculated to be 0.2.
InaudibleTree
Messages
9
Reaction score
0
An academic department with five faculty members narrowed its choice for department head to either candidate A or candidate B. Each member then voted on a slip of paper for one of the candidates. Suppose there are actually three votes for A and two for B. If the slips are selected for tallying in random order, what is the probability that A remains ahead of B throughout the vote count?

My answer:

We will say $C$ will be the event that A remains ahead throughout the vote count.

Total number of ways for the three A's to be tallied: ${5 \choose3 } = 10$

In order for A to remain ahead it must be the case that the first two tallies go to A. After that there remain three slips to be tallied: one A and two B. There are ${3 \choose1 } = 3$ ways for the one remaining A to be tallied. One of these ways (BBA) results in A and B having the same number of tallies before the last slip is chosen. Thus,

$P(C) = (3 - 1) / 10 = 2 / 10 = 0.2$

Is this correct?
 
Mathematics news on Phys.org
Hello, KyleM!

I agree with your reasoning and your answer.

To double-check, I listed the {5\choose3,2}=10 outcomes.

. . \begin{array}{ccc} \color{blue}{AAABB} &&ABBAA \\ \color{blue}{AABAB} && BAAAB \\ AABBA && BAABA \\ ABAAB && BABAA \\ ABABA && BBAAA \end{array}

Only in the first two does A's votes constantly exceed B's votes.

 
Ok, great!

Thank you soroban.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
9
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K