Probability of cosine of angle between two directions in collision

AI Thread Summary
The discussion centers on the interpretation of the probability of the cosine of the angle between two directions during gas molecule collisions, as explained in Feynman's lectures. It emphasizes that gas molecules are equally likely to move in any direction, leading to equal probabilities for different areas on a sphere surrounding a collision point. The mathematical relationship d(-cosθ) = sinθ dθ indicates that any value of cosθ is equally probable, as the differential area of the sphere is proportional to sinθ. This relationship connects the distribution of directions to the cosine values, suggesting that cosθ can range from -1 to 1 with equal likelihood. The conversation clarifies the confusion surrounding the use of different angle notations and reinforces the concept of symmetry in molecular motion.
albertrichardf
Messages
165
Reaction score
11
The question refers to the Feynman lectures on physics Vol I chapter 39. He discusses collisions between gas molecules. Here is a relevant extract:

They are equally likely to go in all directions, but how do we say that? There is of course no likelihood that they will go in any specific direction, because a specific direction is too exact, so we have to talk about per unit “something.” The idea is that any area on a sphere centered at a collision point will have just as many molecules going through it as go through any other equal area on the sphere. So the result of the collisions will be to distribute the directions so that equal areas on a sphere will have equal probabilities.

Incidentally, if we just want to discuss the original direction and some other direction an angle ø from it, it is an interesting property that the differential area of a sphere of unit radius is sin ø dø times 2π. And sin ø dø is the same as the differential of - cos ø. So what it means is that the cosine of the angle ø between any two directions is equally likely to be anything from -1 to 1.

My question is how does he conclude that cos ø could be anything from 1 to -1 based on the idea that equal areas have an equal number of molecules passing through? I can't see that at all. The first paragraph just compares areas, but when he talks about cos ø he puts forth only one area: That between the two directions. So how does he go from 2 areas to one only?

Here is the link to the chapter: http://www.feynmanlectures.caltech.edu/I_39.html It is in section four.

Thanks for any answers
 
Physics news on Phys.org
There is an original direction, vertically upward in his Fig. 32-1, and a new direction specified by the polar angle θ. He calculates a differential annular segment with area 2π sinθ dθ (that includes all azimuthal angles as these are equally probable by symmetry). All such annular segments will have equal probabilities to contain molecules, that is, equal numbers of molecules going through it as through any other annulus. Now it's just a mathematical fact that d(-cosθ) = sinθ dθ so any value of cosθ is equally likely to contain molecules. (It's a bit confusing that he is using ∅ in the paragraph and θ in the figure).
 
  • Like
Likes albertrichardf
pixel said:
There is an original direction, vertically upward in his Fig. 32-1, and a new direction specified by the polar angle θ. He calculates a differential annular segment with area 2π sinθ dθ (that includes all azimuthal angles as these are equally probable by symmetry). All such annular segments will have equal probabilities to contain molecules, that is, equal numbers of molecules going through it as through any other annulus. Now it's just a mathematical fact that d(-cosθ) = sinθ dθ so any value of cosθ is equally likely to contain molecules. (It's a bit confusing that he is using ∅ in the paragraph and θ in the figure).
Oh alright. So essentially the cos theta comes from the coordinate system rather than the angle forming the area. Thanks for the explanation.
 
Albertrichardf said:
Oh alright. So essentially the cos theta comes from the coordinate system rather than the angle forming the area. Thanks for the explanation.

I'm not sure what you mean by this.
 
pixel said:
There is an original direction, vertically upward in his Fig. 32-1, and a new direction specified by the polar angle θ. He calculates a differential annular segment with area 2π sinθ dθ (that includes all azimuthal angles as these are equally probable by symmetry). All such annular segments will have equal probabilities to contain molecules, that is, equal numbers of molecules going through it as through any other annulus. Now it's just a mathematical fact that d(-cosθ) = sinθ dθ so any value of cosθ is equally likely to contain molecules. (It's a bit confusing that he is using ∅ in the paragraph and θ in the figure).

Can you please explain why you say any value of cosθ is equally likely to contain molecules (Feynman said this by saying cosθ is equally likely to be anything from -1 to +1). You mentioned that d(-cosθ) = sinθ dθ, but I don't see why this means cosθ is equally likely to be anything from -1 to +1.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top