Probability of Measuring ##L_x = 0## for a Given ##\psi##

  • Thread starter Thread starter t0pquark
  • Start date Start date
  • Tags Tags
    Measurement
t0pquark
Messages
14
Reaction score
2
Homework Statement
Compute the probability that a measurement of ##L_x## will give zero for an angular momentum particle (1) with ##\vert \psi \rangle = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\
\frac{-2}{3} \end{bmatrix} ##.
Relevant Equations
In a 3D Hilbert space, for spin 1, ##L_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}##.
The probability that a measurement of ##L_x## will give zero for a given ##\psi## should be ##\vert \langle L_x = 0 \vert \psi \rangle \vert ^2##, I think.
I found the eigenvalues of ##L_x## to be ##\lambda = -1, 0, 1##. Since it asks for the probability that the measurement will give zero, I think I should be looking at the eigenvector that corresponds to zero, which is ##\begin{bmatrix} \frac{1}{\sqrt 2} \\ 0 \\ \frac{-1}{\sqrt 2} \end{bmatrix} ##.
I am not sure where to go from here?
 
Physics news on Phys.org
Simply calculate ##| \langle L_x = 0 | \psi \rangle |^2## in vector form.
 
t0pquark said:
Homework Statement: Compute the probability that a measurement of ##L_x## will give zero for an angular momentum particle (1) with ##\vert \psi \rangle = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\
\frac{-2}{3} \end{bmatrix} ##.
Homework Equations: In a 3D Hilbert space, for spin 1, ##L_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}##.

The probability that a measurement of ##L_x## will give zero for a given ##\psi## should be ##\vert \langle L_x = 0 \vert \psi \rangle \vert ^2##, I think.
I found the eigenvalues of ##L_x## to be ##\lambda = -1, 0, 1##. Since it asks for the probability that the measurement will give zero, I think I should be looking at the eigenvector that corresponds to zero, which is ##\begin{bmatrix} \frac{1}{\sqrt 2} \\ 0 \\ \frac{-1}{\sqrt 2} \end{bmatrix} ##.
I am not sure where to go from here?

You need to think about what you are doing. You have a state expressed in one basis ( the z-basis). And you really want that state expressed in another basis (the x-basis).

So, you could do all of the work to transform your state to the x-basis and then you could simply read off the probabilities of getting ##-1, 0, 1## for a measurement of ##L_x##: just take the modulus squared of each component.

But, you are only asked for the probability of getting ##L_x = 0##. So, you only need the zeroth component in the x-basis. So, you don't have to do all the work. You only need to find one component.

Now, if you think about linear algebra, the components of any vector ##\psi## in any basis are given by ##\langle b_n | \psi \rangle##, where ##b_n## is nth basis vector.

In this case, you want the zeroth component of ##\psi## in the x-basis. As you have calculated the zeroth x-basis vector, you can just take the inner product of this with ##\psi##. The probability, as above, is the modulus squared of this component.
 
That explanation helps!

So then I have ##( \begin{bmatrix} \frac{1}{ \sqrt 2} \\ 0 \\ \frac{-1}{ \sqrt 2} \end{bmatrix} \cdot \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ \frac{-2}{3} \end{bmatrix} )^2 = (\frac{2}{3 \sqrt 2} + \frac{2}{3 \sqrt 2})^2 = \frac{8}{9}##, right?
 
  • Like
Likes PeroK
t0pquark said:
That explanation helps!

So then I have ##( \begin{bmatrix} \frac{1}{ \sqrt 2} \\ 0 \\ \frac{-1}{ \sqrt 2} \end{bmatrix} \cdot \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ \frac{-2}{3} \end{bmatrix} )^2 = (\frac{2}{3 \sqrt 2} + \frac{2}{3 \sqrt 2})^2 = \frac{8}{9}##, right?
The left vector should be a row vector, but otherwise it is correct.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top