Probability of stealing a base Question

  • Thread starter Thread starter aj1767
  • Start date Start date
  • Tags Tags
    Base Probability
AI Thread Summary
The discussion focuses on calculating the probability that at least one of three baseball players will steal a base, given their individual probabilities of success: Player A at 40%, Player B at 60%, and Player C at 10%. The initial formula attempted was incorrect, yielding a probability greater than 100%. The correct approach involves calculating the probability of none of the players stealing a base and subtracting that from 1, leading to a final probability of 0.784 for at least one successful steal. This method is noted for its ease of expansion to include more players. The conversation concludes with appreciation for the assistance in solving the problem.
aj1767
Messages
2
Reaction score
0
I have been grappling with this one for the past 24 hours.

I'll make this baseball related, consisting of three independent events assuming the following:
Player A has a 40% chance of stealing a base in "his game" tonight.
Player B has a 60% chance of stealing a base in "his game" tonight.
Player C has a 10% chance of stealing a base in "his game" tonight.

I want to figure out what the chances are that AT LEAST ONE of the three players will steal a base tonight. I originally thought the formula was P(AUBUC)=P(A)+P(B)+P(C)-P(A)*P(B)*P(C), but that gives me a final result of 1.076... a result higher than 100%. So that can't be it.

Can somebody help me out with this one?
 
Mathematics news on Phys.org
The formula for three items should be written as:
P(A\cupB\cupC)=P(A) + P(B) + P(C) - P(A) P(B) - P(A) P(C) - P(B) P(C) + P(A) P(B) P(C) = 0.784
 
Another way to do it is this:

Let S represent the number of steals.

P(S>=1) =
1 - P(S<1) =
1 - P(S=0) =
1 - P(not A and not B and not C) =
1 - P(not A)*P(not B)*P(not C) <---- Because they are independent events.

Now, P(not A) = 1-.4 = .6, P(not B) = .4, P(not C) = .9

So, P(S>=1) = 0.784
 
Thank you both for your responses and thank you for helping me find out how to solve such problems. I like this second method since it is easier to expand to more events by simply adding more "P(not D), P(not E), etc."

Thanks again.

Pwantar said:
Another way to do it is this:

Let S represent the number of steals.

P(S>=1) =
1 - P(S<1) =
1 - P(S=0) =
1 - P(not A and not B and not C) =
1 - P(not A)*P(not B)*P(not C) <---- Because they are independent events.

Now, P(not A) = 1-.4 = .6, P(not B) = .4, P(not C) = .9

So, P(S>=1) = 0.784
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top