sanctifier
- 58
- 0
Homework Statement
If random variables X and Y are independent and both belong to Possion distribution of parameters \lambda_1 and \lambda_2, then what is the conditional distribution of X when the condition X + Y = m is given?
Homework Equations
Possion distribution of parameter \lambda: P(x)= \frac{\lambda^x}{x!} e^{-\lambda}
The Attempt at a Solution
Answer:
Because P(X=x|X+Y=m) = \frac{P(X=x \cup X+Y=m)}{P(X+Y=m)}
Let \begin{cases}u=x \\v=x+y \end{cases} then \begin{cases}x=u \\y=v-u \end{cases}
Jacobian= \begin{bmatrix} \frac{dx}{du} & \frac{dx}{dv} \\ \frac{dy}{du} & \frac{dy}{dv} \end{bmatrix} = \begin{bmatrix}1 & 0 \\-1 & 1 \end{bmatrix} = 1
The joint distribution of X and Y is g(x,y)= \frac{\lambda_1^x}{x!} \frac{\lambda_2^y}{y!}e^{-\lambda_1 - \lambda_2}
Then f(u,v)=g(u,v-u)|Jacobian|=\frac{\lambda_1^u}{u!} \frac{\lambda_2^{v-u}}{(v-u)!}e^{-\lambda_1 - \lambda_2}
Hence the marginal distribution of v is:
f_v(v)=\sum_{u=0}^{m}f(u,v)=e^{-\lambda_1-\lambda_2}\lambda_2^v \sum_{u=0}^{m} {( \frac{\lambda_1}{\lambda_2} )}^u \frac{1}{u!(v-u)!}
P(X=x|X+Y=m)=P(U=u|V=m)= \frac{f(u,m)}{f_v(m)}
Does the sum \sum_{u=0}^{m} {( \frac{\lambda_1}{\lambda_2} )}^u \frac{1}{u!(v-u)!} have a concise form?
Is the answer correct? Thank you in advance!