Can You Help With Phase and Group Velocity for Relativistic Electron Waves?

AI Thread Summary
The discussion revolves around solving a homework problem related to the phase and group velocities of relativistic electron waves. The dispersion relation provided leads to the expressions for phase velocity (Vp) and group velocity (Vg), with the key point being that their product is a constant, specifically c^2, independent of the wave number k. Participants clarify that the problem does not require eliminating k from the individual velocities but rather demonstrating the constancy of their product. A related question is raised about a different formulation of the problem, questioning whether there might be a typo regarding the particle velocity. The conversation emphasizes the importance of focusing on the product of velocities rather than their individual dependencies on k.
somebody-nobody
Messages
12
Reaction score
0
I am really stucked with my homework problem.Can anybody help me.

The dispersion relation for free relativistic electron waves is

w(omega)=(c^2k^2+(m(mass of electron)c^2*2pi/h)^2)^0.5

Obtain expression for the phase velocity Vp and group velocity Vg of these waves and show that their product is a constant ,independent of k.

Solution:

I know that Vp=w/k=c(1+4m^2c^2pi^2/h^2k^2)^0.5

but I don't know how to get rid of k here!
 
Physics news on Phys.org
somebody-nobody said:
I am really stucked with my homework problem.Can anybody help me.

The dispersion relation for free relativistic electron waves is

w(omega)=(c^2k^2+(m(mass of electron)c^2*2pi/h)^2)^0.5

Obtain expression for the phase velocity Vp and group velocity Vg of these waves and show that their product is a constant ,independent of k.

Solution:

I know that Vp=w/k=c(1+4m^2c^2pi^2/h^2k^2)^0.5

but I don't know how to get rid of k here!
What is hk/m? What do you have for the group velocity?
 
Is it me or we lost 2 posts here? :-O
 
quasar987 said:
Is it me or we lost 2 posts here? :-O
It's not you. They are gone. Here is my part of it

hk/m = p/m = v It would just be a shorter way to write all those terms. You don’t need it to do the problem. I’m sorry I mentioned it.

Do not try to eliminate k from the individual velocities. The problem is asking you to show that their product is independent of k, not that each of them are independent of k.
 
somebody-nobody said:
I am really stucked with my homework problem.Can anybody help me.

The dispersion relation for free relativistic electron waves is

w(omega)=(c^2k^2+(m(mass of electron)c^2*2pi/h)^2)^0.5

Obtain expression for the phase velocity Vp and group velocity Vg of these waves and show that their product is a constant ,independent of k.

Solution:

I know that Vp=w/k=c(1+4m^2c^2pi^2/h^2k^2)^0.5

but I don't know how to get rid of k here!
As OlderDan said, the problem clearly ask to show that the product Vp*Vg is a constant, independent of k, not to show that Vp or Vg are independent of k!

Their product is c^2:

Vg = dw/dk = c^2*k/SQRT[c^2*k^2 + (m*c^2*2*pi/h)^2] =

c/SQRT[1 + (2*pi*m/h*k)^2] --> Vg*Vp = c^2.

But, as OlderDan said (again!) there is no need to make these computations, since Vg = p/m = h*k/m, so: Vp*Vg = (w/k)*h*k/m = h*w/m = E/m = c^2.
 
Last edited:
i got it

Sorry,

I was reading problm 1000 times ,and I didnt realize that they ask for products.

Thank you all for help.
 
I got the same question, except it's worded slightly differently. It wants us to show that a relativistic electron of velocity v=hk/m (h is hbar) with dispertion relation

w^2/c^2 = k^2 + m^2c^2/h^2 (slightly different from the one from the previous question)

satisfies

group velocity x particle velocity = c^2.

Like discussed above, I can find that group velocity x *phase* velocity = c^2, but if I take the particle velocity as the velocity of the electron v (above), then I can't get the same thing. Do you think this may have been a typo?
 
Back
Top