Problem with finding second solution to ODE

  • Thread starter Thread starter Judas503
  • Start date Start date
  • Tags Tags
    Ode
Judas503
Messages
22
Reaction score
0
1. The problem is to find the series solution to the following differential equation
$$ x^2 \frac{d^2 x}{dx^2}+x\frac{dy}{dx}+(x^2 - 1)y $$








3. Using the ansatz $$ y = \sum _{\lambda = 0}^{\infty}a_{\lambda}x^{k+\lambda}$$ the
solution to the indicial equation was found to be k=1 and k=-1. I obtained a solution for k = 1, however I am having a problem with obtaining the second solution. The recurrence relation for k = -1 is $$ a_{j}=-\frac{a_{j-1}}{(j-1)(j-2)+j-2} $$ which diverges for j = 2. In this case, is it possible to obtain a solution for k = -1?
 
Physics news on Phys.org
If the roots of the indicial equation differ by an integer, the second root may not yield a solution, which appears to be the case here. Your textbook probably covers how to get a second solution in such a case, and it's mentioned on this Wikipedia page: http://en.wikipedia.org/wiki/Frobenius_method#Double_roots
 
  • Like
Likes 1 person
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top