Problem with Lagrange first kind equations

  • Thread starter Thread starter carllacan
  • Start date Start date
  • Tags Tags
    Lagrange
carllacan
Messages
272
Reaction score
3

Homework Statement


Two masses move in a plane restricted to concentric circles with radii R1 and R2. They are joined by a solid rod of length B. Use Lagrange first order equations to find the equilibrium point


Homework Equations


Constraint due to the solid bar: B = R12 + R22 -2R1R2cos(θ1 + θ2), where θ1 and θ2 are the polar coordinates of the masses.

The Attempt at a Solution


My Langrangian is as follows: L = (m/2)(R12ω12+R22ω22)-mg(sinθ1+sinθ2)
By substituing in this expression http://en.wikipedia.org/wiki/Lagrangian_mechanics#Lagrange_equations_of_the_first_kind I find two equations of motion:
-mgcos(θ1)+mR12+α1 + R1R2sin(θ1 - θ2)λ1 = 0
-mgcos(θ2)+mR22+α2 - R1R2sin(θ1 - θ2)λ2 = 0
where α1 and α2 are the angular accelerations of the masses, and the λs are the Lagrange multipliers. I can't solve this equations, though. Is there any method of solving them that I cannot find or is it that my whole procedure is wrong?
 
Last edited:
Physics news on Phys.org
Can you show us what your Lagrangian looks like, that you use to derive these equations of motion?
You denoted the constraint by ##L##, but I don't think that expression is your Lagrangian because I don't see a kinetic term.
 
Sorry, its a bit confusing because the length of the bar is L. I'll change it to B and edit the rest.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top