Problems solving a limit which results in an indeterminate form

  • Thread starter Thread starter greg_rack
  • Start date Start date
  • Tags Tags
    Form Limit
greg_rack
Gold Member
Messages
361
Reaction score
79
Homework Statement
##\lim_{x \to +\infty}(\sqrt[3]{x^3-4x^2}-x)##
Relevant Equations
none
Hi guys, I am having difficulties in solving this limit.

Below, I'll attach my procedure which ends up in the indeterminate form ##0\cdot \infty##...
How could I solve it?

$$\lim_{x \to +\infty}(\sqrt[3]{x^3-4x^2}-x) \rightarrow
\lim_{x \to +\infty}(x\sqrt[3]{1-\frac{4}{x}}-x) \rightarrow
\lim_{x \to +\infty}[x(\sqrt[3]{1-\frac{4}{x}}-1)]$$
 
Physics news on Phys.org
What is the binomial expansion of ##(1-\frac{4}{x})^{1/3}##?
 
greg_rack said:
Homework Statement:: ##\lim_{x \to +\infty}(\sqrt[3]{x^3-4x^2}-x)##
Relevant Equations:: none

Hi guys, I am having difficulties in solving this limit.

Below, I'll attach my procedure which ends up in the indeterminate form ##0\cdot \infty##...
How could I solve it?

$$\lim_{x \to +\infty}(\sqrt[3]{x^3-4x^2}-x) \rightarrow
\lim_{x \to +\infty}(x\sqrt[3]{1-\frac{4}{x}}-x) \rightarrow
\lim_{x \to +\infty}[x(\sqrt[3]{1-\frac{4}{x}}-1)]$$
You can do it using the binomial expansion, as above. Or, you use a general factorisation method using:
$$(f(x)^{1/3} - x)(f(x)^{2/3} + xf(x)^{1/3} + x^2) = f(x) - x^3$$ with ##f(x) = x^3 -4x^2##
 
  • Like
Likes greg_rack and Mark44
PeroK said:
You can do it using the binomial expansion, as above. Or, you use a general factorisation method using:
$$(f(x)^{1/3} - x)(f(x)^{2/3} + xf(x)^{1/3} + x^2) = f(x) - x^3$$ with ##f(x) = x^3 -4x^2##
This is the tack I would take. The basic ideas when dealing with a difference of square roots or a difference of cube roots (as in this problem) are these identities:
##(a - b)(a + b) = a^2 - b^2##
##(a - b)(a^2 + ab + b^2) = a^3 - b^3##
##(a +b)(a^2 - ab + b^2) = a^3 + b^3##
In the first identity, a or b stands for the square root of some expression.
In the second and third, a or b stands for the cube root of some expression.
 
  • Like
Likes greg_rack and PeroK
Great, thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top