I Product of complex conjugate functions with infinite sums

Adolfo Scheidt
Messages
5
Reaction score
1
Hello there. I'm here to request help with mathematics in respect to a problem of quantum physics. Consider the following function $$ f(\theta) = \sum_{l=0}^{\infty}(2l+1)a_l P_l(cos\theta) , $$ where ##f(\theta)## is a complex function ##P_l(cos\theta)## is the l-th Legendre polynomial and ##a_l## is a the complex term (known as partial wave amplitude). Then, the author calculates the product of ##f(\theta)## with its complex conjugate, and shows the result: $$ f(\theta)f^{*}(\theta) = |f(\theta)|^2 = \sum_{l}\sum_{l'}(2l+1)(2l'+1)(a_l)^{*}(a_{l'})P_l(cos\theta)P_{l'}(cos\theta). $$ My problem here is to understand how he obtained the second equation. I'm not familiar with operations with sums and real analysis, and I'm stuck with it. Any help will be very appreciated.
 
Mathematics news on Phys.org
Which part is unclear? The second equation directly follows from the first. The sums work like with real numbers. The complex conjugation is only relevant for the complex amplitude, where you also find it in the second equation.
 
  • Like
Likes Adolfo Scheidt
mfb said:
Which part is unclear? The second equation directly follows from the first. The sums work like with real numbers. The complex conjugation is only relevant for the complex amplitude, where you also find it in the second equation.
Good pointed; more precisely, I do not understand why he chooses a different index for each sum.
 
Let's make an example, with a sum over just three terms: ##(x_1 + x_2 + x_3) \cdot (y_1 + y_2 + y_3)##. This will lead to 9 terms: ##x_i y_j## for i=1,2,3, and j=1,2,3 separately. As formula, ##(\sum_{i=1}^{3}x_i) (\sum_{i=1}^{3} y_i) = (x_1 + x_2 + x_3) \cdot (y_1 + y_2 + y_3) = (x_1 y_1 + x_1 y_2 + x_1 y_3 + x_2 y_1 + x_2 y_2 + x_2 y_3 + x_3 y_1 + x_3 y_2 + x_3 y_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} x_i y_j##. You need two different indices to have to cross-terms (like ##x_1 y_3##) included.
 
  • Like
Likes Adolfo Scheidt
mfb said:
Let's make an example, with a sum over just three terms: ##(x_1 + x_2 + x_3) \cdot (y_1 + y_2 + y_3)##. This will lead to 9 terms: ##x_i y_j## for i=1,2,3, and j=1,2,3 separately. As formula, ##(\sum_{i=1}^{3}x_i) (\sum_{i=1}^{3} y_i) = (x_1 + x_2 + x_3) \cdot (y_1 + y_2 + y_3) = (x_1 y_1 + x_1 y_2 + x_1 y_3 + x_2 y_1 + x_2 y_2 + x_2 y_3 + x_3 y_1 + x_3 y_2 + x_3 y_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} x_i y_j##. You need two different indices to have to cross-terms (like ##x_1 y_3##) included.
Oh, it's very clear now! Thank you so much :)
 
  • Like
Likes mfb
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top