Projectile motion - ball in circular motion

AI Thread Summary
The discussion revolves around a physics problem involving a ball in circular motion on a table that snaps, causing the ball to move in the x-direction under the influence of gravity. The challenge is to determine how long it takes for the ball to fall off the table when the table is tilted to maintain contact without exerting force. Participants explore the implications of the ball's projectile motion and the geometry of the situation, noting that maintaining contact while the ball follows a parabolic trajectory may be impossible. The conversation highlights the complexities of the problem, including the need to consider the angle of the table and the relationship between the ball's motion and the table's surface. Ultimately, the problem remains difficult to solve, but insights into the dynamics of the situation are shared.
finitefemmet
Messages
13
Reaction score
0

Homework Statement



Okey, so the problem started with a ball in circular motion on a table (xy-plane, seen from above). Eventually the rope that held the ball snapped and the ball continued on (no friction/air resistance) with constant velocity in x-direction. Gravity working in negative z-direction, just too clarify.

Mass: 0.01kg
Starting velocity x-dir. : 0.5m/s (constant, from when the rope snapped)
Starting velocity z-dir : 0
Distance from were the ball snapped too the edge: 0.5m

Suppose you now turn the table in such a way that there always is ("barely") contact
between the ball and the table, but there is no force between them.

So my problem:

How long does it take before the ball falls off the table?

The situation starts when the rope snapped (time=0)



The Attempt at a Solution



Well I have been really stuck on this. I have been trying to express the angle of the table, function of gravity. Also tried using pytagoras too express z-x in the motion equations. Since I know that the hypotenuse is 0.5m. Tried and failed a lot really.

If anyone have any suggestions or how I can express this, that would be appreciated.

Thank you
 
Physics news on Phys.org
finitefemmet said:

Homework Statement



Okey, so the problem started with a ball in circular motion on a table (xy-plane, seen from above). Eventually the rope that held the ball snapped and the ball continued on (no friction/air resistance) with constant velocity in x-direction. Gravity working in negative z-direction, just too clarify.

Mass: 0.01kg
Starting velocity x-dir. : 0.5m/s (constant, from when the rope snapped)
Starting velocity z-dir : 0
Distance from were the ball snapped too the edge: 0.5m

Suppose you now turn the table in such a way that there always is ("barely") contact
between the ball and the table, but there is no force between them.

So my problem:

How long does it take before the ball falls off the table?

The situation starts when the rope snapped (time=0)



The Attempt at a Solution



Well I have been really stuck on this. I have been trying to express the angle of the table, function of gravity. Also tried using pytagoras too express z-x in the motion equations. Since I know that the hypotenuse is 0.5m. Tried and failed a lot really.

If anyone have any suggestions or how I can express this, that would be appreciated.

Thank you

Suppose that at the point the string broke, the table magically disappeared. The ball would then travel as a projectile - following a parabolic path. That seems to indicate that unless the table surface is parabolic - there cannot be "such a way that there always is ("barely") contact between the ball and the table"

That is unless the table surface is vertical - in which case you need more than a string to have the ball traveling in a (now) vertical circle at constant speed.

The situation may be impossible - both to occur and also to analyse.
 
Yes well I have been trying too solve this without thinking about the table. But I was thinking of something, since I know that the hypotenuse is 0.5m. If you imagine a right-angled triangle, one side that illustrates the difference in height and the other traveled in x-direction.

But still I find this very hard to solve.
 
Hmm. If the table is (actively) tilted in such a fashion as to always be barely in contact with the projectile without exerting force on it, what might one say about the plane of the surface of the table with respect to the velocity vector of the projectile?
 
I have solved it;)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top