Proof by contradiction for statement of the form P->(Q and R)

christoff
Messages
123
Reaction score
0
Say I have a statement like this:
P implies (Q1 and Q2).

If I wanted to prove this by contradiction, I would assume P and not(Q1 and Q2)=[(not Q1) or (not Q2)] both hold, and try to find a contradiction.

My question is... Am I done if I find a contradiction while assuming P and [(not Q1) and (not Q2)] ? Is this sufficient? Or do I need to find a contradiction in both the statements:
P and (not Q1),
P and (not Q2)

?
 
Mathematics news on Phys.org
Never mind. I figured it out.
 
No. The negation of "Q and R" is "not Q or not R".
The negation of "if P then (Q and R)" is "If (not Q or not R) then not P".

(For those who read this thread and wondered).
 
The contrapositive of "if P then (Q and R)" is "if (not Q or not R) then not P"

But the contrapositive has the same truth value as the original.

The negation of "if P then (Q and R)" is "P and (not Q or not R)"
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top