Boorglar
- 210
- 10
Homework Statement
This problem was taken from Spivak's Calculus 3rd Edition, Problem 19-25 (d).
Let f be integrable on [-1 , 1] and continuous at 0. Show that \lim_{h\rightarrow 0^+} {\int_{-1}^{1}{\frac{h} {h^2+x^2}}f(x)dx = {\pi}f(0).}
Homework Equations
I already proved from part (c) that \lim_{h\rightarrow 0^+} {\int_{-1}^{1}{\frac{h} {h^2+x^2}}dx = {\pi}}
which is easy with arctan.
The Attempt at a Solution
I found a way to prove it but I am not 100% sure that it is rigorous enough (and the proof given in the answers is different).
First consider \int_{-h}^{h}{\frac{h} {h^2+x^2}}f(x)dx. Since f is continuous at 0, then for some \delta > 0, f(0) - \epsilon < f(x) < f(0) + \epsilon for all x in [-\delta , \delta]. Choose 0<h<\delta. Then (f(0)-\epsilon) \int_{-h}^{h}{\frac{h} {h^2+x^2}}dx < \int_{-h}^{h}{\frac{h} {h^2+x^2}}f(x)dx < (f(0)+\epsilon) \int_{-h}^{h}{\frac{h} {h^2+x^2}}dx {\pi}(f(0)-\epsilon) ≤ \lim_{h\rightarrow 0^+} {\int_{-h}^{h}{\frac{h} {h^2+x^2}}f(x)dx} ≤ \pi(f(0)+\epsilon) taking the limits by part (c) and this is true for any \epsilon > 0 so \lim_{h\rightarrow 0^+} {\int_{-h}^{h}{\frac{h} {h^2+x^2}}f(x)dx} = {\pi}f(0)
Now consider \int_{h+\delta'}^1{\frac{h} {h^2+x^2}}f(x)dx for any \delta' > 0.
\frac{h} {h^2+1}\int_{h+\delta'}^1{f(x)dx} < \int_{h+\delta'}^1{\frac{h} {h^2+x^2}}f(x)dx < \frac{h} {h^2+(h+\delta')^2}\int_{h+\delta'}^1{f(x)dx} (the maximum and minimum values of the fraction occur at h+\delta' and 1 respectively). Therefore, since the integral is a number, <br /> \lim_{h\rightarrow 0^+} {\int_{h+\delta'}^1{\frac{h} {h^2+x^2}}f(x)dx} = 0
and this is true for any \delta'>0.
Finally consider \int_{h}^{h+\delta'}{\frac{h} {h^2+x^2}}f(x)dx. Add the requirement that h+\delta' < \delta so that <br /> \frac{h} {h^2+1}\int_{h}^{h+\delta'}{f(x)dx} < \int_{h}^{h+\delta'}{\frac{h} {h^2+x^2}}f(x)dx < (f(0)+\epsilon) \int_{h}^{h+\delta'} {\frac{h} {2h^2}dx} = \frac{\delta'}{2h}(f(0)+\epsilon) < \frac{h}{2}(f(0)-\epsilon) if we also require that \delta'<h^2. Since we can make this smaller than any number by choosing small enough h and \delta' with the given requirements, this shows that \lim_{h\rightarrow 0^+} {\int_{h}^{h+\delta'}{\frac{h} {h^2+x^2}}f(x)dx} = 0 for any small enough \delta'.
Combining all three results shows that \lim_{h\rightarrow 0^+} {\int_{-1}^{1}{\frac{h} {h^2+x^2}}f(x)dx} = \lim_{h\rightarrow 0^+} {\int_{-h}^{h}{\frac{h} {h^2+x^2}}f(x)dx} + 2\lim_{h\rightarrow 0^+} {\int_{h+\delta'}^1{\frac{h} {h^2+x^2}}f(x)dx} + 2\lim_{h\rightarrow 0^+} {\int_{h}^{h+\delta'}{\frac{h} {h^2+x^2}}f(x)dx} = {\pi}f(0) + 0 + 0 = {\pi}f(0) (using symmetry).
QED
Ok that was long and maybe confusing, I'm sorry... but that's the proof I could find. Can you tell me if there are any gaps or incorrect assumptions in the proof? Thanks!